» »

Основные причины ускоренного износа двигателя. Причины ускоренного износа двигателя В каких двигателях происходит быстрее износ механизмов

09.03.2020

Все детали в процессе эксплуатации теряют свои первоначальные характеристики. Причина этому – ИЗНАШИВАНИЕ – процесс изменения запчастей, в результате которого механизм теряет первоначальные свойства.

Визуальные признаки износа: изменение размера и структуры поверхностей деталей.

Виды износа деталей

Изменение характеристик используемых запчастей – процесс, который является результатом их взаимодействия и использования. Часть изменений происходит даже при нормальной эксплуатации механизмов. Такие изменения называются ЕСТЕСТВЕННЫМИ и закладываются при запуске узла.

2 вида неестественного износа деталей:

  • НОРМАЛЬНЫЙ

Является следствием неправильной эксплуатации, нарушений монтажа. Приводит к постепенным отказам техники и ухудшению технического состояния объекта.

  • АВАРИЙНЫЙ

По мере роста числовых значений нормального износа объекты и механизмы становятся полностью непригодными.

Факторы, которые влияют на темпы износа:

  • Конструкция механизма
  • Точность и чистота обработки
  • Прочность материала конкретной детали и соприкасающихся с ней
  • Качество смазки
  • Условия эксплуатации узла (регулярность, характер нагрузки, температурный режим, давление)
  • Регулярность ТО

Причины, вызывающие износ деталей

Все причины можно объединить в 3 группы:

  • Физический/механический

Является последствием высоких нагрузок и воздействия силы трения одной детали о другую. Соприкасающиеся запчасти истираются и на их поверхностях появляются трещины, цапапины, шероховатости.

  • Тепловой/ молекулярно-механический

Совместно работающие детали испытывают перегреввследствие больших скоростей и удельных давлений. Из-за резкого повышения температуры происходит схватывание и последующее разрушение молекулярных связей частиц внутри металла. Детали коробятся и оплавляются.

  • Химический/ коррозионный

Наблюдается на поверхности металлических деталей как следствие воздействия воды, воздуха, химических веществ. Происходят процессы коррозии и разъедания металла. Чтобы этого избежать, рекомендуется использовать .

Стоит понимать, что причиной изнашивания и поломок деталей служит не один отдельно взятый фактор, а несколько взаимосвязанных.

Как восстановить изношенные детали?

Основные методы восстановления деталей:

  • Реставрация механической и слесарной обработкой

Подходит для деталей с плоскими соприкасающимися поверхностями. Изношенное место обрабатывают (шлифуют, стачивают и т.п.) и переводят в следующий размер. Механическую обработку применяют отдельно и как финальный этап других методов.

  • Обновление сваркой и наплавкой

Путем наплавки прочных металлов восстанавливаются размеры поврежденных деталей.

  • Восстановление детали металлизацией

Размер изношенной детали восстанавливается нанесением расплавленного металла тонким (от 0, 03 мм) и толстым (свыше 10 мм) слоем.

  • Гальваническая наплавка (хромирование)

Нанесение хрома тонким слоем (до 1 мм) обеспечивает устойчивость к механическому истиранию. Метод схож с металлизацией, однако менее универсален. Восстановленные детали плохо переносят динамические нагрузки.

  • Упрочнение и склеивание пластиком

Пластмассы позволяют получить неподвижно соединенные узлы, а также остановить износ деталей. В отличие от предыдущих методов восстановлению пластиком подлежат металлические и неметаллические детали. Стоимость ремонта пластмассами существенно ниже. С помощью современных материалов для литья можно восстановить деталь сложной и нестандартной геометрии.

1. Номинальный. (УСИЛЕННЫЙ) Пробег 0-15 тыс.км. Езда в городском режиме (едем - стоим) нарушает температурный баланс системы охлаждения, приводя к неравномерному расширению трущихся деталей. Происходит очень быстрая притирка пар трения с потерей металла, образованием задиров.

2. Текущий. (ДОПУСТИМЫЙ) Пробег 15-60 тыс.км. Автомобиль стал динамичен. Прошла приработка - притирка! Но появился расход масла. Накопившиеся отложения (закоксовка) под кольцами образуют довольно серьезные задиры на цилиндрах. А что мы сделали для уменьшения трения?
Эксплуатация авто в городском режиме (едем - стоим) напоминает езду на коньках по асфальту, а не по льду. Главная функция масла - отводить до 80% тепла от поршня, на поверхности которого при t 1200ºС (бензин) сгорает рабочая смесь. Масло теряет вязкость от высокой температуры. А для разделения трущихся поверхностей требуется прочная маслянная пленка.

Хорошая промывка при замене масла, 3-х ступенчатая раскоксовка, восстанавливающие нанотехнологии - залог безизносности.

3. Критический. (ПРЕДЕЛЬНЫЙ) Пробег 60-120 тыс.км. Накопившейся нагар (кокс) под кольцами и в канавках не позволяют им амортизировать. Пригорают кольца, клапана. Резко увеличивается расход масла. Создаётся прямой контакт колец с поверхностью цилиндра. Стираются хоны, износ идет катастрофически.

Вовремя проведенная видеодиагностика позволяет на 70% восстановить двигатель программами безразборного ремонта, в 4-10 раз дешевле и не прибегая к кап. ремонту.

4. Запредельный. Пробег свыше 120 тыс.км. Двигатель теряет более 70 граммов металла. Лавинообразные отложения снижают все параметры: давление, "компрессию". Требуется кап. ремонт с дефектовкой деталей. После кап. ремонта обязательно обработка супротек + молекулярный ворс, для увеличения ресурса в 2-3 раза.

Своевременно обнаруженный износ на 2 или 3 этапе ресурса двигателя - легко устраняется с помощью 3-х ступенчатой раскоксовки с применением Супротека и молекулярного ворса - без кап. ремонта.

Как происходит износ:

Полный износ - это потеря двигателем более 70 граммов металла

1. Частые запуски при ночном прогреве

2. Неправильная обкатка нового или капитально отремонтированного двигателя в режиме высокого гидродинамического трения (езда в натяг при высоких нагрузках). Всему виной - городские пробки

3. Перегрев двигателя. В 99% случаях перегрев происходит из-за плохого отвода тепла - внутреннего перегрева. Приборная доска не констатирует такой перегрев

4. Закоксовка - главный фактор Как происходит этот процесс Тяжелые фракции углеводородов несгоревшего топлива и лаковые отложения масла приобразуются в более вязкие, а под действием t - в твердые. Трудноудаляемые смолисто коксовые образования (нагар) способны за счет лаковых преобразований масла, прилипать к поверхности металла и забивать полости.

В 3-4 раза ускоряют закоксовку масла:
- содержащие полимерные загустители
- имеющие высокую сульфатную зольность - свыше 1,2%
-имеющие низкую tº вспышки - менее 210ºС

Маслосъемные кольца соскабливают нагар вместе с маслом с поверхности цилиндра, при этом часть нагара удаляется в фильтр, часть откладывается на внутренней поверхности двигателя, другая часть забивает канавки поршневых колец, при этом теряется подвижность.

Возникшая закоксовка:
1. увеличивает расход масла
2. уменьшает надпоршневое давление (степень сжатия)
3. прорывающие газы в картер очень быстро окисляют масло, оно темнеет и теряет свои функции

Закоксовка уменьшает амплитуду колебания кольца. Поршень усиленно давит на кольцо, последний - на стенку цилиндра. Так происходит потеря металла - идет износ.

Главные негативные физические явления,
разрушающие двигатель, создающие износ:

- Флотация - разрушение и патеря металла
- Кавитация - "глючит" система охлаждения
- Помпаж - неустойчивая работа двигателя (плавают обороты)

- Бризантное состояние - детонация, перегрев
- Футировка - образование очень прочного нагарообразования на поршнях

Отсутствие этих 5-ти явлений при работе двигателя - главный закон долговечности..

Проведение досрочной диагностики в новых и пробежных автомобилях, дальнейшее сервисное обслуживание в нашем центре, позволит сэкономить время и деньги.

При постановке на сервисное обслуживание (первую замену масла и диагностику в нашем центре):
1. Выдается дисконтная карта на бесплатную интерактивную диагностику
2. Карта дает право на промывку и раскоксовку топливной системы, очистку инжектора со скидкой 3-7% .

При работе любого производственного оборудования происходят процессы, связанные с постепенным снижением его рабочих характеристик и изменением свойств деталей и узлов. Накапливаясь, они могут привести к полной остановке и серьезной поломке. Чтобы избежать негативных экономических последствий, предприятия организуют у себя процесс управления износом и своевременного обновления основных фондов.

Определение износа

Износом, или старением, называют постепенное снижение эксплуатационных характеристик изделий, узлов или оборудования в результате изменения их формы, размеров или физико-химических свойств. Эти изменения возникают постепенно и накапливаются в ходе эксплуатации. Существует много факторов, определяющих скорость старения. Негативно сказываются:

  • трение;
  • статические, импульсные или периодические механические нагрузки;
  • температурный режим, особенно экстремальный.

Замедляют старение следующие факторы:

  • конструктивные решения;
  • применение современных и качественных смазочных материалов;
  • соблюдение условий эксплуатации;
  • своевременное техническое обслуживание, планово–предупредительные ремонты.

Вследствие снижения эксплуатационных характеристик снижается также и потребительская стоимость изделий.

Виды износа

Скорость и степень изнашивания определяется условиями трения, нагрузками, свойствами материалов и конструктивными особенностями изделий.

В зависимости от характера внешних воздействий на материалы изделия различают следующие основные виды износа:

  • абразивный вид — повреждение поверхности мелкими частицами других материалов;
  • кавитационный, вызываемый взрывным схлопыванием газовых пузырьков в жидкой среде;
  • адгезионный вид;
  • окислительный вид, вызываемый химическими реакциями;
  • тепловой вид;
  • усталостный вид, вызванный изменениями структуры материала.

Некоторые виды старения разбиваются на подвиды, как, например, абразивный.

Абразивный

Заключается в разрушении поверхностного слоя материала в ходе контакта с более твердыми частицами других материалов. Характерен для механизмов, работающих в условиях запыленности:

  • горное оборудование;
  • транспорт, дорожно-строительные механизмы;
  • сельскохозяйственные машины;
  • строительство и производство стройматериалов.

Противодействовать ему можно, применяя специальные упрочненные покрытия для трущихся пар, а также своевременно меняя смазку.

Газоабразивный

Данный подвид абразивного изнашивания отличается от него тем, что твердые абразивные частицы перемещаются в газовом потоке. Материал поверхности крошится, срезается, деформируется. Встречается в таком оборудовании, как:

  • пневмопроводы;
  • лопасти вентиляторов и насосов для перекачки загрязненных газов;
  • узлы доменных установок;
  • компоненты твердотопливных турбореактивных двигателей.

Зачастую газоабразивное воздействие сочетается с присутствием высоких температур и плазменных потоков.

Скачать ГОСТ 27674-88

Гидроабразивный

Воздействие аналогично предыдущему, но роль носителя абразива выполняет не газовая среда, а поток жидкости.

Такому воздействию подвержены:

  • гидротранспортные системы;
  • узлы турбин ГЭС;
  • компоненты намывочного оборудования;
  • горная техника, применяемая для промывки руды.

Иногда гидроабразивные процессы усугубляются воздействием агрессивной жидкой среды.

Кавитационный

Перепады давления в жидкостном потоке, обтекающем конструкции, приводят к возникновению газовых пузырьков в зоне относительного разрежения и их последующему взрывному схлопыванию с образование ударной волны. Эта ударная волна и является основным действующим фактором кавитационного разрушения поверхностей. Такое разрушение встречается на гребных винтах больших и малых судов, в гидротурбинном и технологическом оборудовании. Усложнять ситуацию могут воздействие агрессивной жидкой среды и наличие в ней абразивной взвеси.

Адгезионный

При продолжительном трении, сопровождающимся пластическими деформациями участников трущейся пары, происходит периодическое сближение участков поверхности на расстояние, позволяющее силам межатомного взаимодействия проявить себя. Начинает взаимопроникновение атомов вещества одной детали в кристаллические структуры другой. Неоднократное возникновение адгезионных связей и их прерывание приводят к отделению поверхностных зон от детали. Адгезионному старению подвержены нагруженные трущиеся пары: подшипники, валы, оси, вкладыши скольжения.

Тепловой

Тепловой вид старения заключается в разрушении поверхностного слоя материала или в изменении свойств глубинных его слоев под воздействием постоянного или периодического нагрева элементов конструкции до температуры пластичности. Повреждения выражаются в смятии, оплавлении и изменении формы детали. Характерен для высоконагруженных узлов тяжелого оборудования, валков прокатных станов, машин горячей штамповки. Может встречаться и в других механизмах при нарушении проектных условий смазки или охлаждения.

Усталостный

Связан с явлением усталости металла под переменными или статическими механическими нагрузками. Напряжения сдвигового типа приводят к развитию в материалах деталей трещин, вызывающих снижение прочности. Трещины приповерхностного слоя растут, объединяются и пресекаются друг с другом. Это приводит к эрозии мелких чешуеобразным фрагментов. Со временем такой износ может привести к разрушению детали. Встречается в узлах транспортных систем, рельсах, колесных парах, горных машинах, строительных конструкциях и т.п.

Фреттинговый

Фреттинг — явление микроразрушения деталей, находящихся в тесном контакте в условиях вибрации малой амплитуды — от сотых долей микрона. Такие нагрузки характерны для заклепок, резьбовых соединений, шпонок, шлицев и штифтов, соединяющих детали механизмов. По мере нарастания фреттингового старения и отслоения частичек металла последние выступают в роли абразива, усугубляя процесс.

Существуют и другие, менее распространенные специфические виды старения.

Типы износа

Классификация видов износа с точки зрения вызывающих его физических явлений в микромире, дополняется систематизацией по макроскопическим последствиям для экономики и ее субъектов.

В бухгалтерском учете и финансовой аналитике понятие износа, отражающее физическую сторону явлений, тесно связано с экономическим понятием амортизации оборудования. Амортизация означает как снижение стоимости оборудования по мере его старения, так и отнесение части этого снижения на стоимость производимой продукции. Это делается с целью аккумулирования на специальных амортизационных счетах средств для закупки нового оборудования или частичного усовершенствования его.

В зависимости от причин и последствий различают физический, функциональный и экономический.

Физический износ

Здесь подразумевается непосредственная утрата проектных свойств и характеристик единицы оборудования в ходе ее использования. Такая утрата может быть либо полной, либо частичной. В случае частичного износа оборудование подвергается восстановительный ремонт, возвращающий свойства и характеристики единицы на первоначальный (или другой, заранее оговоренный) уровень. При полном износе оборудование подлежит списанию и демонтажу.

Кроме степени, физический износ также разделяется на рода:

  • Первый. Оборудование изнашивается в ходе планового использования с соблюдением всех норм и правил, установленных изготовителем.
  • Второй. Изменение свойств обусловлено неправильной эксплуатацией либо факторами непреодолимой силы.
  • Аварийный. Скрытое изменение свойств приводит к внезапному аварийному выходу из строя.

Перечисленные разновидности применимы не только к оборудованию в целом, но и к отдельным его деталям и узлам

Данный тип является отражением процесса морального устаревания основных фондов. Этот процесс заключается в появлении на рынке однотипного, но более производительного, экономичного и безопасного оборудования. Станок или установка физически еще вполне исправна и может выпускать продукцию, но применение новых технологий или более совершенных моделей, появляющихся на рынке, делает использование устаревших экономически невыгодным. Функциональный износ может быть:

  • Частичным. Станок невыгоден для законченного производственного цикла, но вполне пригоден для выполнения некоторого ограниченного набора операций.
  • Полным. Любое использование приводит к причинению убытков. Единица подлежит списанию и демонтажу

Функциональный износ также подразделяют по вызвавшим его факторам:

  • Моральный. Доступность технологически идентичных, но более совершенных моделей.
  • Технологический. Разработка принципиально новых технологий для выпуска такого же вида продукции. Приводит к необходимости перестройки всей технологической цепочки с полным или частичным обновлением состава основных средств.

В случае появления новой технологии, как правило, состав оборудования сокращается, а трудоемкость падает.

Кроме физических, временных и природных факторов на сохранность характеристик оборудования оказывают опосредованное влияние и экономические факторы:

  • Падение спроса на выпускаемые товары.
  • Инфляционные процессы. Цены на сырье, комплектующие и трудовые ресурсы растут, в то же время пропорционального роста цен на продукцию предприятия не происходит.
  • Ценовое давление конкурентов.
  • Рост стоимости кредитных услуг, используемых для операционной деятельности или для обновления основных фондов.
  • Внеинфляционные колебания цен на рынках сырья.
  • Законодательные ограничения на применение оборудования, не отвечающего стандартам по охране окружающей среды.

Экономическому старению и утрате потребительских качеств подвержена как недвижимость, так и производственные группы основных фондов. На каждом предприятии ведутся реестры основных фондов, в которых учитывается их износ и ход амортизационных накоплений.

Основные причины и способы как определить износ

Чтобы определить степень и причины износа, на каждом предприятии создается и действует комиссия по основным фондам. Износ оборудования определяется одним из следующих способов:

  • Наблюдение. Включает в себя визуальный осмотр и комплексы измерений и испытаний.
  • По сроку эксплуатации. Определяется как отношение фактического срока использования к нормативному. Значение этого отношения принимается за величину износа в процентном выражении.
  • укрупненная оценка состояния объекта производится с помощью специальных метрик и шкал.
  • Прямое измерение в деньгах. Сопоставляется стоимость приобретения новой аналогичной единицы основных средств и расходы на восстановительный ремонт.
  • доходность дальнейшего использования. Оценивается снижение дохода с учетом всех издержек по восстановлению свойств по сравнению с теоретическим доходом.

Какую из методик применять в каждом конкретном случае — решает комиссия по основным средствам, руководствуясь нормативными документами и доступностью исходной информации.

Способы учета

Амортизационные отчисления, призванные компенсировать процессы старения оборудования, также допустимо определять по нескольким методикам:

  • линейный, или пропорциональный расчет;
  • способ уменьшаемого остатка;
  • по суммарному сроку производственного применения;
  • в соответствии с объемом выпущенной продукции.

Выбор методики осуществляется при создании или глубокой реорганизации предприятия и закрепляется в его учетной политике.

Эксплуатация оборудования в соответствии с правилами и нормативами, своевременные и достаточные отчисления в амортизационные фонды позволяют предприятиям сохранять технологическую и экономическую эффективность на конкурентоспособном уровне и радовать своих потребителей качественными товарами по разумным ценам.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1.1 Абразивное изнашивание
    • 1.2 Усталостное изнашивание
    • 1.3 Изнашивание при заедании
  • Заключение

Введение

В процессе эксплуатации автомобиля в результате воздействия на него целого ряда факторов (воздействие нагрузок, вибраций, влаги, воздушных потоков, абразивных частиц при попадании на автомобиль пыли и грязи, температурных воздействий и т. п.) происходит необратимое ухудшение его технического состояния, связанное с изнашиванием и повреждением его деталей, а также изменением ряда их свойств (упругости, пластичности и др.). изнашивание гидроэрозионный абразивный

Изменение технического состояния автомобиля обусловлено работой его узлов и механизмов, воздействием внешних условий и хранения автомобиля, а также случайными факторами. К случайным факторам относятся скрытые дефекты деталей автомобиля, перегрузки конструкции и т. п.

Основными постоянно действующими причинами изменения технического состояния автомобиля при его эксплуатации являлся изнашивание, пластические деформации, усталостные разрушения, коррозия, а также физико-химические изменения материала деталей (старение).

1. Виды разрушения металлических поверхностей

Чтобы эффективно управлять процессами изменения технического состояния машин и обосновывать мероприятия, направленные на снижение интенсивности изнашивания деталей машин, следует в каждом конкретном случае определять вид изнашивания поверхностей. Для этого необходимо задать следующие характеристики: тип относительного перемещения поверхностей (схему фрикционного контакта); характер промежуточной среды (вид смазочного материала или рабочей жидкости); основной механизм изнашивания.

В сопряжениях машин существуют четыре типа относительного перемещения рабочих поверхностей деталей: скольжение, качение, удар, осцилляция (перемещение, имеющее характер относительных колебаний с амплитудой в среднем 0,02-0,05 мм).

По виду промежуточной среды различают изнашивание при трении без смазочного материала, при трении со смазочным материалом, при трении с абразивным материалом. В зависимости от свойств материалов деталей, смазочного или абразивного материала, а также от их количественного соотношения в сопряжениях в процессе работы возникают разрушения поверхностей различных видов.

Изнашивание разделяют на следующие виды: механическое (абразивное, гидро и газоабразивное, эрозионное, гидро и газоэрозионное, кавитационное, усталостное, изнашивание при заедании, изнашивание при фреттинге); коррозионно-механическое (окислительное, изнашивание при фреттинг-коррозии); изнашивание при действии электрического тока (электроэрозионное).

Механическое изнашивание возникает в результате механических воздействий на поверхность трения.

Коррозионно-механическое изнашивание является следствием механического воздействия, сопровождаемого химическим и (или) электрическим взаимодействием материала со средой.

Электроэрозионным называют эрозионное изнашивание поверхности в результате воздействия разрядов при прохождении электрического тока. В машинах этот вид изнашивания встречается в элементах электрооборудования в генераторах, электромоторах, а также в электромагнитных пускателях.

В реальных условиях работы сопряжений машин наблюдаются одновременно несколько видов изнашивания. Однако, как правило, удается установить ведущий вид изнашивания, лимитирующий долговечность деталей, и отделить его от остальных, сопутствующих видов разрушения поверхностей, которые незначительно влияют на работоспособность сопряжения.

Механизм основного вида изнашивания определяют путем изучения изношенных поверхностей. Наблюдая характер проявления износа поверхностей трения (наличие царапин, трещин, следов выкрашивания, разрушение пленки оксидов) и зная показатели свойств материалов деталей и смазочного материала, а также данные о наличии и характере абразива, интенсивности изнашивания и режиме работы сопряжения, можно достаточно полно обосновать заключение о виде изнашивания сопряжения и разработать мероприятия по повышению долговечности машины.

1.1 Абразивное изнашивание

Абразивным называют механическое изнашивание материала в результате в основном режущего или царапающего действия на него абразивных частиц, находящихся в свободном или закрепленном состоянии. Абразивные частицы, обладая более высокой, чем металл, твердостью, разрушают поверхность деталей и резко увеличивают их износ. Этот вид изнашивания является одним из наиболее распространенных. В дорожных машинах более 60 % случаев износа имеют абразивный характер. Такое изнашивание встречается в деталях шкворневых соединений, открытых подшипниках скольжения, деталях рабочих органов дорожных машин, деталях ходовых частей и др.

Основным источником попадания абразивных частиц в сопряжения машин является окружающая среда. В 1 м3 воздуха содержится от 0,04 до 5 г пыли, на 60...80 % состоящей из взвешенных частиц минералов. Большинство частиц имеют размеры d = 5... 120 мкм, т.е. соизмеримы с зазорами в сопряжениях дорожных машин. Основные составляющие пыли: диоксид кремния SiО2, оксид железа Fe2О3, соединения Al, Са, Mg, Na и других элементов.

При определении вида изнашивания элементов машин необходимо отличать от гидро- и газоабразивного изнашивания эрозионное, гидрогазоэрозионное и кавитационное изнашивание.

Эрозионным называют механическое изнашивание поверхности в результате воздействия потока жидкости и (или) газа.

Гидроэрозионное (газоэрозионное) изнашивание - это эрозионное изнашивание в результате воздействия потока жидкости (газа).

Кавитационным называется гидроэрозионное изнашивание при движении твердого тела относительно жидкости, при котором пузырьки газа захлопываются вблизи поверхности, что создает местное повышение давления или температуры. Изнашивание этого вида наиболее часто встречается в элементах трубопроводов и в коллекторах при отсутствии абразивных частиц в рабочей жидкости или газе. Для дорожных и строительных машин эрозионные виды изнашивания не характерны.

1.2 Усталостное изнашивание

Усталостным называется механическое изнашивание в результате усталостного разрушения при повторном деформировании микрообъемов материала поверхностного слоя. Такое изнашивание наблюдается в большинстве сопряжений дорожных машин в качестве сопутствующего вида изнашивания. Оно возникает как при трении качения, так и при трении скольжения.

Процесс усталостного изнашивания обычно связан с многократно повторяющимися циклами напряжений в контакте качения или скольжения. В процессе взаимодействия поверхностей в их верхних слоях возникают поля напряжений. Схема распределения напряжений при контакте цилиндра с плоскостью, рассчитанная методом конечных элементов. В процессе трения на рабочей поверхности деталей возникают максимальные напряжения сжатия, а по глубине материала детали распространяются направленные касательные напряжения т с максимумом на некотором расстоянии от точки контакта.

Интенсивность усталостного изнашивания определяется следующими факторами: наличие остаточных напряжений и поверхностных концентраторов напряжений (оксидов и других крупных включений, дислокаций); качество поверхности (микропрофиль, загрязнения, вмятины, царапины, задиры); распределение нагрузки в сопряжении (упругие деформации, перекос деталей, зазор); вид трения (качения, скольжения или качения с проскальзыванием); наличие и тип смазочного материала.

Существуют две модели процесса усталостного изнашивания материала. Большое распространение в настоящее время получила теория усталостного изнашивания, разработанная группой ученых под руководством И.В. Крагельского. Согласно этой теории частицы износа с поверхности трения могут отделяться и без внедрения микровыступов одной детали в поверхностные слои другой детали сопряжения. Изнашивание может происходить вследствие усталости микрообъемов материала, возникающей под действием многократных сжимающих и растягивающих усилий.

Усталостное изнашивание наиболее часто наблюдается в условиях высоких контактных нагрузок при одновременном качении и проскальзывании одной поверхности по другой. В таких условиях работают, например, зубчатые колеса, тяжело нагруженные шестерни и подшипники качения, зубчатые венцы. Усталостное изнашивание рабочих поверхностей деталей сопровождается повышением уровня шума и вибрации по мере увеличения износа.

Усталостное изнашивание материала может быть умеренным и прогрессирующим. Обычное умеренное изнашивание для большинства пар трения не является опасным, и детали, имеющие усталостные повреждения, могут использоваться длительное время. Прогрессирующее изнашивание возникает при высоких контактных напряжениях, сопровождается интенсивным разрушением поверхности и может привести к поломке деталей (например, зуба шестерни).

При интенсивном абразивном изнашивании рабочих поверхностей их разрушение происходит быстрее, чем образование усталостных трещин, поэтому, как правило, в таких случаях питтинг не наблюдается.

Усталостное изнашивание также проявляется и при взаимодействии деталей из эластомерных материалов. Упругие свойства этих материалов позволяют воспроизводить шероховатость противолежащей твердой поверхности в процессе скольжения, что, в свою очередь, приводит к многократному циклическому нагружению материала. Если выступы неровностей твердой поверхности имеют закругленную форму и не вызывают абразивного изнашивания, то повреждение может возникнуть в подповерхностных слоях эластомера под действием повторяющихся напряжений сжатия, растяжения и знакопеременных касательных напряжений. Этот усталостный механизм вызывает изнашивание относительно малой интенсивности, которая существенно возрастает при действии циклических напряжений в течение длительного времени.

1.3 Изнашивание при заедании

Изнашивание при заедании происходит в результате схватывания, глубинного вырывания материала, переноса его с одной поверхности трения на другую и воздействия возникших неровностей на сопряженную поверхность. Изнашивание этого вида является одним из наиболее опасных и разрушительных. Оно сопровождается прочным соединением контактирующих участков поверхностей трения. В процессе трения относительное перемещение поверхностей приводит к вырыву частиц металла одной поверхности и наволакиванию их на другую более твердую поверхность.

В механизме изнашивания при заедании важную роль играет атомно-молекулярное взаимодействие материалов деталей, возникающее при сближении поверхностей. В отличие от изнашивания других видов, для которых требуется определенное время на развитие процесса и накопление разрушительных повреждений, при заедании разрушение поверхности наступает достаточно быстро и приводит к тяжелым формам повреждений (задиры и раковины).

Процесс образования металлических связей зависит от свойств сопряженных поверхностей (их природы, твердости), а также от методов их обработки. При наличии оксидных пленок на поверхности металлов процесс заедания зависит также от свойств этих оксидов. Защитные пленки, прочно соединяющиеся с основным металлом и способные быстро восстанавливаться при разрушении, препятствуют схватыванию металлов.

Изнашивание при заедании металлов происходит вследствие нарушения правила положительного градиента механических свойств по глубине в условиях трения без смазочного материала или при недостаточном его количестве. При трении качения в условиях граничной смазки также наблюдается изнашивание, вызванное схватыванием материалов и заеданием. Схватывание происходит при местном разрыве смазочной пленки и установлении металлического контакта. Это возможно не только при прекращении подачи смазочного материала, но и вследствие общей перегрузки сопряжения, резкого повышения температуры масла в поверхностных слоях, местных температурных вспышек и т.д.

Изнашивание при заедании чаще всего встречается в зубчатых зацеплениях. По способности противостоять заеданию в одних и тех же условиях нагружения зубчатые передачи всех типов можно расположить в следующем порядке: цилиндрические передачи с внутренним и внешним зацеплением; конические передачи с прямыми, косыми и спиральными зубьями; гипоидные и винтовые передачи, имеющие самую низкую противозадирную стойкость. Это объясняется тем, что у гипоидных и винтовых передач наибольшее скольжение зубьев отмечается в зацеплении. Изнашивание при заедании встречается также в шариковых и роликовых подшипниках, в тяжело нагруженных опорах качения.

1.4 Коррозионно-механическое изнашивание

Коррозионно-механическое изнашивание характеризуется процессом трения материала, вступившего в химическое взаимодействие со средой. При этом на поверхности металла образуются новые, менее прочные химические соединения, которые в процессе работы сопряжения удаляются с продуктами изнашивания. К коррозионно-механическому изнашиванию относят окислительное изнашивание и изнашивание при фреттинг-коррозии.

Окислительным называют изнашивание, при котором основное влияние на разрушение поверхности оказывает химическая реакция материала с кислородом или окисляющей окружающей средой. Оно возникает при трении качения со смазочным материалом или без него. Скорость окислительного изнашивания невелика и составляет 0,05...0,011 мкм/ч. Процесс активизируется с повышением температуры, особенно во влажной среде.

Изнашиванием при фреттинг-коррозии называется коррозионно-механическое изнашивание соприкасающихся тел при малых колебательных относительных перемещениях. Этот вид изнашивания отличается от изнашивания при фреттинге механического изнашивания соприкасающихся тел при малых колебательных относительных перемещениях. Основное отличие заключается в том, что изнашивание при фреттинге происходит в отсутствие окисляющей окружающей среды без проявления химической реакции материалов деталей и продуктов изнашивания с кислородом. Учитывая это, нетрудно провести аналогию в механизмах развития изнашивания при фреттинге и фреттинг-коррозии.

Изнашивание при фреттинге и фреттинг-коррозии обычно происходит на сопряженных поверхностях валов с напрессованными на них дисками колес, муфтами и кольцами подшипников качения; на осях и ступицах колес; на опорных поверхностях пружин; на затянутых стыках, пригнанных поверхностях шпонок и пазов; на опорах двигателей и редукторов. Необходимым условием возникновения фреттинг-коррозии является относительное проскальзывание сопряженных поверхностей, которое может быть вызвано вибрацией, возвратно-поступательным перемещением, периодическим изгибом или скручиванием сопряженных деталей. Фреттинг-процесс сопровождается схватыванием, окислением, коррозией и усталостным разрушением микрообъемов.

В результате фреттинг-коррозии предел выносливости поверхности уменьшается в 3-6 раз. На поверхностях деталей в местах сопряжений образуются натиры, налипания металла, вырывы, раковины, а также поверхностные микротрещины. Отличительным признаком износа вследствие фреттинг-коррозии является наличие на поверхностях трения раковин, в которых сосредоточены спрессованные оксиды, имеющие специфическую окраску. В отличие от изнашивания других видов при фреттинг-коррозии продукты изнашивания в основной своей массе не могут выйти из зоны контакта рабочих поверхностей деталей.

Изнашивание при фреттинг-коррозии влечет за собой нарушение размерной точности соединения (если часть продуктов изнашивания находит выход из зоны контакта) либо заедание и заклинивание разъемных соединений (если продукты изнашивания остаются в зоне трения). Для фреттинг-коррозии характерны низкая скорость (около 3 мм/с) относительного перемещения поверхностей и путь (0,025 мм) трения, эквивалентный амплитуде колебаний, при частоте колебаний до 30 Гц и выше; локализация повреждений поверхности на площадках действительного контакта вследствие малых относительных смещений; активное окисление

При взаимодействии эластомерных материалов с металлическими деталями также наблюдается явление схватывания. Эластомер изнашивается, если коэффициент трения между ним и твердой поверхностью достаточно велик, а прочность эластомера на разрыв мала. Если поверхностные слои материала находятся в состоянии максимальной деформации, то в направлении, перпендикулярном к направлению скольжения, появляется царапина или небольшая трещина. Далее происходит постепенное вырывание части упругого материала эластомера, находящегося в состоянии схватывания с твердой поверхностью. При этом слой эластомера, отделяемый от поверхности, скручивается в ролик и образует частицу износа. Интенсивность изнашивания эластомера в этом случае существенно зависит от температуры, нагрузки и вида смазочного материала. Подбирая смазочный материал с учетом внешних условий и упругих свойств эластомера, можно полностью исключить этот вид изнашивания.

Процесс изнашивания при фреггинг-коррозии в условиях трения без смазочного материала можно разделить на три этапа.

Первый этап сопровождается разрушением выступов и оксидных пленок вследствие циклически повторяющихся колебательных относительных перемещений контактирующих поверхностей под действием высоких нагрузок. Происходят процессы упрочнения материалов и пластического деформирования выступов микронеровностей, вызывающие сближение поверхностей. Сближение поверхностей вызывает молекулярное взаимодействие и схватывание металла в отдельных точках контакта. Разрушение вследствие усталости выступов и узлов схватывания порождает продукты изнашивания, часть которых окисляется. Для этого этапа характерен повышенный износ с монотонно убывающей скоростью изнашивания.

На втором этапе в поверхностных слоях накапливаются усталостные повреждения. В зоне трения формируется коррозионно-активная среда под действием кислорода воздуха и влаги. Между поверхностями создается электролитическая среда, интенсифицирующая процесс окисления металлических поверхностей и их коррозионное разрушение. Для этого этапа характерны стабилизация процесса изнашивания, уменьшение скорости изнашивания по сравнению со скоростью изнашивания на первом этапе.

На третьем этапе вследствие усталостных коррозионных процессов разупрочненные поверхностные слои металлов начинают интенсивно разрушаться с постепенно возрастающей скоростью. Процесс имеет коррозионно-усталостный характер разрушения.

Интенсивность разрушения поверхностей при фретгинг-коррозии зависит от амплитуды и частоты колебаний, нагрузки, свойств материалов деталей и окружающей среды.

2. Основные причины износов и повреждений кузовов

Износ и повреждения кузовов могут быть вызваны различными причинами. В зависимости от причины возникновения неисправности делятся на эксплуатационные, конструктивные, технологические и возникающие из-за неправильного хранения и ухода за кузовом.

В процессе эксплуатации элементы и узлы кузова испытывают динамические нагрузки напряжениям от изгиба в вертикальной плоскости и скручивания, нагрузки от собственной массы, массы груза и пассажиров.

Износу кузова и его узлов способствуют также значительные напряжения, которые возникают в результате колебания кузова не только при движении его по неровностям и возможных толчков и ударов при наезде на эти неровности, но и вследствие работы двигателя и погрешностей в балансировке вращающихся узлов шасси автомобиля (в особенности карданных валов), а также в результате смещения центра тяжести в продольном и поперечном направлениях.

Нагрузки могут быть восприняты кузовом полностью, если автомобиль не имеет рамы шасси, или частично при установке кузова на раму.

Исследования показали, что переменные по величине напряжения действуют на элементы кузова в процессе эксплуатации автомобиля. Эти напряжения вызывают накопление усталости и приводят к усталостным разрушениям. Усталостные разрушения начинаются в районе накопления напряжений.

В кузовах автомобилей, поступающих в капитальный ремонт, встречаются две основные группы повреждений и неисправностей: повреждения, появляющиеся в результате нарастания изменений в состоянии кузова.

К ним относится естественный износ, возникающий в процессе нормальной технической эксплуатации автомобиля, вследствие постоянного или периодического воздействия на кузов таких факторов, как коррозия, трение, загнивание деревянных деталей, упругие и пластические деформации и др..; неисправности, появление которых связано с действием человека и являются следствием конструктивных недоработок, заводских недоделок, нарушения норм ухода за кузовом и правил технической эксплуатации (в том числе и аварийные), некачественного ремонта кузовов.

Кроме нормального физического износа, при эксплуатации автомобиля в тяжелых условиях или в результате нарушения норм ухода и профилактики может возникнуть ускоренный износ, а также разрушение отдельных частей кузова.

Характерными видами износа и повреждений кузова в процессе эксплуатации автомобиля являются коррозия металла, возникающая на поверхности корпуса под действием химических или электромеханических воздействий; нарушение плотности заклепочных и сварных соединений, трещины и разрывы; деформация (вмятины, перекосы, прогибы, коробление, выпучины).

Коррозия -- основной вид износа металлического корпуса кузова.

В металлических деталях кузова чаще всего встречается электрохимический тип коррозии, при котором происходит взаимодействие металла с раствором электролита, адсорбируемого из воздуха, и которая появляется в результате как прямого попадания влаги на незащищенные металлические поверхности кузова, так и в результате образования конденсата в его межобшивочном пространстве (между внутренними и наружными панелями дверей, бортов, крыши и т.д.). Особенно сильно развивается коррозия в местах, труднодоступных для осмотра и очистки в небольших зазорах, а также в отбортовках и загибах кромок, где периодически попадающая в них влага может сохраняться длительное время.

Так, в колесных нишах может собираться грязь, соль и влага, стимулирующие процесс развития коррозии; днище кузова недостаточно стойко к воздействию факторов, возбуждающих коррозию. На скорость коррозии большое влияние оказывает состав атмосферы, ее загрязненность различными примесями (выбросами промышленных предприятий, такими, как двуокись серы, образующаяся в результате сжигания топлива; хлористый аммоний, попадающий в атмосферу вследствие испарения морей и океанов; твердые частицы в виде пыли), а также температура окружающей среды и др. Твердые частицы, содержащиеся в атмосфере или попадающие на поверхность кузова с полотна дороги, вызывают также абразивный износ металлической поверхности кузова. С повышением температуры скорость коррозии возрастает (в особенности при наличии в атмосфере агрессивных примесей и содержания влаги).

Зимние покрытия дорог солью для удаления снега и льда, а также работа автомобиля на морских побережьях приводят к увеличению коррозии автомобиля.

Коррозионные разрушения в кузове встречаются также в результате контакта стальных деталей с деталями, изготовленными из некоторых других материалов (дюралюминия, каучуков, содержащих сернистые соединения, пластмассовыми на основе фенольных смол и другими, а также в результате контакта металла с деталями, изготовленными из очень влажного пиломатериала, содержащего заметное количество органических кислот (муравьиную и др.).

Так, исследования показали, что при контакте стали с поли-изобутиленом скорость коррозии металла в сутки составляет 20 мг/м2, а при контакте этой же стали с силиконовым каучуком -- 321 мг/м2 в сутки.

Этот вид коррозии наблюдается в местах постановки различных резиновых уплотнителей, в местах прилегания к кузову хромированных декоративных деталей (ободков фар и т. д.).

К появлению коррозии на поверхности деталей кузова приводит также контактное трение, имеющее место при одновременном воздействии коррозионной среды и трения, при колебательном перемещении двух поверхностей металла относительно друг друга в коррозионной среде. Этим видом коррозии подвержены двери по периметру, крылья в местах присоединения их к корпусу болтами и другие металлические части кузова.

При окраске автомобилей может иметь место загрязнение тщательно подготовленных к окраске поверхностей кузова влажными руками и загрязненным воздухом. Это при недостаточно качественном покрытии также приводит к коррозии кузова.

Процесс коррозии кузовов происходит либо равномерно на значительной площади (поверхностная коррозия представлена на рисунке 1), либо разъедание идет в толщу металла, образуя глубокие местные разрушения -- раковины, пятна в отдельных точках поверхности металла (точечная коррозия показана на рисунке 2).

Рисунок 1 - Поверхностная коррозия на крыле автомобиля.

Рисунок 2 - точечная коррозия на автомобиле.

Сплошная коррозия менее опасна, чем местная, которая приводит к разрушению металлических частей кузова, утрате ими прочности к резкому снижению предела коррозионной усталости и к коррозионной хрупкости, характерной для облицовки кузова.

В зависимости от условий работы, способствующих возникновению коррозии, детали и узлы кузова могут быть подразделены на имеющие открытые поверхности, обращенные к полотну дороги (низ пола, крылья, арки колеса, пороги дверей, низ облицовки радиатора), на имеющие поверхности, которые находятся в пределах объема кузова (каркас, багажник, верх пола), и на имеющие поверхности, которые образуют закрытый изолированный объем (скрытые части каркаса, низ наружной облицовки дверей и др.).

Трещины корпуса возникают при ударе вследствие нарушения технологии обработки металла корпуса (ударная многократная обработка стали в холодном состоянии), плохого качества сборки при изготовлении или ремонте кузова (значительные механические усилия при соединении деталей), в результате применения низкого качества стали, влияния усталости металла и коррозии с последующей механической нагрузкой, дефектов сборки узлов и деталей, а также недостаточно прочной конструкции узла.

Трещины могут образовываться в любой части или детали металлического корпуса, но наиболее часто -- в местах, подверженных вибрации.

На рисунке 3 показаны основные повреждения кузова на примере автомобиля ГАЗ - 24.

Рисунок 3 - Повреждения, встречающиеся в кузове автомобиля ГАЗ-24 «Волга»

1 -- трещины на брызговике; 2 -- нарушение сварного соединения распорки или брыз говика с лонжероном рамы; 3 -- трещины на распорке; 4 -- трещины на панели передка и брызговиках передних колес; 5 трещины на стойках ветрового окна; 6 -- глубокие вмятины на панели стойки ветрового окна; 7 -- перекос проема ветрового окна; 8 -- отрыв кронштейна переднего сиденья; 9 -- трещины на кожухе основания кузова; 10 -- нарушение сварных соединений деталей кузова; 11 -- погнутость водосточного желоба; 12 -- вмятины на наружных панелях, закрытых деталями с внутренней стороны, неровности оставшиеся после правки или рихтовки-13 -- местная коррозия в нижней части заднего окна; 14 -- отрыв стоек задка в местах крепления или трещины на стойках; 15 и 16 -- местные коррозии ручья крышки багажника; 17 -- отрыв кронштейна замка багажника; 18 -- местная коррозия в задней части основания кузова; 19 -- вмятины на нижней панели задка кузова в местах крепления задних фонарей; 20 -- местная коррозия в нижней части брызговика- 21 -- налет коррозии и другие мелкие механические повреждения; 22 -- местная коррозия арки колеса; 23 -- погнутость брызговика заднего крыла; 24 -- нарушение сварного.шва в соединении брызговика с аркой; 25, 32 -- трещины на основании в местах крепления сидений; 26 -- местная коррозия на стойке задней двери и на основании кузова. захватывающая усилитель заднего лонжерона; 27 -- трещины на основании кузова в местах крепления кронштейнов задних рессор и другие; 28 -- вмятины на панели стойки и погнутость центральной стойки; 29 -- отрыв держателей пластин фиксатора и петли двери кузова; 30 -- местная коррозия в нижней части средней стойки боковины; 31 -- местная коррозия и трещины лонжеронов основания кузова; 33 -- перекосы дверных проемов кузовов; 34 -- сплошная коррозия порогов основания; 35 -- вмятины на лонжеронах основания кузова (возможны разрывы); 36 -- срыв резьбы на пластинах крепления фиксатора и петель двери; 37 -- отрыв крышки фиксатора двери; 38 -- вмятины (возможно с разрывами) на панели боковины кузова; 39 -- местная коррозия в нижней части передней стойки; 40 -- нарушение антикоррозионного покрытия; 41 -- отрыв гай-кодержатслей; 42 --погнутость поперечины № 1; 43 -- трещины на щитке передка в местах крепления распорки; 44 -- отрыв кронштейна крепления передка буфера; 45 -- трещины на щитке радиатора; 46 -- местная коррозия на раскосе усилителя; 47 -- трещины в местах крепления лонжерона; 48 -- ослабление заклепочного соединения кронштейна; 49 -- выработка отверстий под палец серьги рессоры и переднего кронштейна крепления задней рессоры; 50 -- отрыв усилителя лонжерона основания кузова; 51 -- износ отверстия крепления амортизатора; 52 -- трещины в местах крепления кронштейнов топливного бака; 53 -- вмятины с острыми углами или разрывами на нижней панели; 54 -- сплошная коррозия на нижней панели задка; 55 -- трещины в местах крепления амортизаторов; 56 -- трещины на кожухе карданного вала

Разрушения сварных соединений в узлах, детали которых соединены точечной сваркой, а также в сплошных сварных швах кузова могут произойти из-за некачественной сварки или воздействия коррозии и внешних сил: вибрации корпуса под действием динамических нагрузок, неравномерного распределения грузов при погрузке и выгрузке кузовов.

Данные разрушения представлены на рисунке 4.

Рисунок 4 - Разрушение сварных соединений под воздействием коррозии

Износ в результате трения встречается в деталях арматуры, осях и отверстиях петель, обивке, в отверстиях заклепочных и болтовых соединений.

Вмятины и выпучины в панелях, а также прогибы и перекосы в кузове появляются вследствие остаточной деформации при ударе или некачественно выполненных работ (сборки, ремонта и т. п.).

Концентрация напряжений в соединениях отдельных элементов корпуса в проемах для дверей, окон, а также на стыках элементов большой и малой жесткости может служить причиной разрушения деталей, если они не усилены.

В конструкциях кузовов обычно предусматриваются необходимые жесткие связи, усиления отдельных участков дополнительными деталями, выдавливанием ребер жесткости.

Однако в процессе длительной эксплуатации кузова и в процессе его ремонта могут выявиться отдельные слабые звенья в корпусе кузова, которые требуют усиления или изменения конструкции узлов во избежание появления вторичных поломок.

Заключение

На изменение технического состояния автомобиля существенное влияние оказывают условия эксплуатации: дорожные условия (техническая категория дороги, вид и качество дорожного покрытия, уклоны, подъемы спуски, радиусы закруглений дорога), условия движения (интенсивное городское движение, движение по загородным дорогам), климатические условия (температура окружающего воздуха, влажность, ветровые нагрузки, солнечная радиация), сезонные условия (пыль летом, грязь и влага осенью и весной), агрессивность окружающей среды (морской воздух, соль на дороге в зимнее время, усиливающие коррозию), а также транспортные условия (загрузка автомобиля).

В результате выполнения реферата были изучены основные виды разрушений кузова автомобиля автомобиля.

К ним относятся такие разрушения как усталостное изнашивание и коррозионно- механическое изнашивание.

Для уменьшения коррозии деталей автомобиля и в первую очередь кузова необходимо поддерживать их чистоту, осуществлять своевременный уход за лакокрасочным покрытием и его восстановление, производить противокоррозионную обработку скрытых полостей кузова и других подверженных коррозии деталей.

Для предотвращения усталостных разрушений и пластических деформаций следует строго соблюдать правила эксплуатации автомобиля, избегая его работы на предельных режимах и с перегрузками.

Список использованных источников

1 Основы работоспособности технических систем учеб. для вузов В.А. Зорин Академия, 2009. - 206 с.

2 Надежность транспортных средств "Основы теории надежности и диагностики" / В. И. Рассоха. - Оренбург: Изд-во ОГУ, 2000. - 100 с.

3 Надежность мобильных машин / К.В. Щурин; М-во образования и науки Рос. Федерации.: ОГУ, 2010. - 586 с.

4 Повышение долговечности транспортных машин: учеб. пособие для вузов / В. А. Бондаренко [и др.]. - М. : Машиностроение, 1999. - 144 с.

5 Основы теории надежности автотранспортных средств: учеб.-метод. рук. для студентов заоч. формы обучения специальностей "150200, 230100" / В. И. Рассоха. - Оренбург: ОГУ, 2000. - 36 с.

Размещено на Allbest.ru

...

Подобные документы

    Методы формирования системы технического осмотра (ТО) и ремонта. Износ и изнашивание сопряженных деталей. Классификация видов изнашивания. Коэффициент технической готовности как основной показатель работы службы АТП. Экономико-вероятностный метод ТО.

    контрольная работа , добавлен 08.04.2010

    Конструкция колесной пары. Типы колесных пар и их основные размеры. Анализ износов и повреждений колесных пар и причины их образования. Неисправности цельнокатаных колес. Производственный процесс ремонта. Участок приемки отремонтированных колесных пар.

    курсовая работа , добавлен 10.04.2012

    Производственная характеристика депо. Структура, состав, производственная характеристика ремонтного отделения или участка. Схема расположения оборудования ремонтного отделения. Детали и узлы электроподвижного состава. Устранение износов и повреждений.

    отчет по практике , добавлен 07.01.2014

    Теория изнашивания. Демонтаж и монтаж машин в условиях эксплуатации. Оборудование, применяемое при монтажно-демонтажных работах. Порядок регистрации тракторов при постановке на учёт и снятии с учёта. Составление годового плана техобслуживания и ремонта.

    контрольная работа , добавлен 15.04.2009

    Параметры рабочего тела и количество горючей смеси. Процесс впуска, сжатия и сгорания. Индикаторные параметры рабочего тела. Основные параметры и литраж двигателя автомобиля. Расчет поршневого кольца карбюраторного двигателя. Расчет поршневого пальца.

    курсовая работа , добавлен 15.03.2012

    Дефекты кузовов и кабин. Технологический процесс ремонта кузовов и кабин. Ремонт неметаллических деталей кузовов. Качество ремонта автомобилей. Незначительные прогибы на пологих лекальных поверхностях, видимые при боковом освещении. Вмятины.

    курсовая работа , добавлен 04.05.2004

    Износ поверхностного слоя, изменение свойств материала, формы, размеров и веса детали. Технологический процесс ремонта машин в сельском хозяйстве. Восстановление гильзы цилиндра двигателя автомобиля ЗИЛ-130, с применением передовых форм и методов ремонта.

    курсовая работа , добавлен 24.03.2010

    Формирование вариационного ряда значений износов вала сцепления трактора. Составление статистического ряда износов, определение опытной и накопленной вероятности. Построение графиков, гистограммы и полигона опытного распределения значений износа.

    контрольная работа , добавлен 11.01.2014

    Сведения об устройстве современных автомобильных кузовов. Кузова легковых автомобилей. Предназначение, строение и работа. Особенности эксплуатации. Структура технологического процесса ремонта кузовов. Основные неисправности. Элементы и приспособления.

    дипломная работа , добавлен 31.07.2008

    Принципы организации технического обслуживания и ремонта машин, технология их проведения, разработка мероприятий по совершенствованию. Технологический процесс приема и выдачи автомобиля УАЗ-469 и ЗМЗ-402, процесс разборки на узлы и детали данных машин.

Основной вопрос этой статьи - а не приводит ли езда на низких оборотах к преждевременному износу мотора? И, какие режимы самые «износообразующие»...
Постановка экспертных испытаний, в целом, понятна. Двигатель – один и тот же: ВАЗовский «восьмиклапанник». Стенд, аппаратура, бензин и несколько канистр масла – каждый цикл испытаний требует его замены. Задача простая – надо «проехать» одно и тоже расстояние, с одной скоростью, но используя различные режимы работы двигателя. На разных передачах…
Как этого достичь? Ехать можно на одной и той же скорости, поддерживая обороты двигателя и 1500, и 2500, и даже 4000 об/мин. Чем выше обороты – тем ниже передача, важно, чтобы мощность, выдаваемая мотором, была бы одинакова. На стенде это сделать просто – крутящий момент измеряем по динамометру, обороты известны – следовательно, и мощность знаем. «Скорость» множим на моточасы, которые мы тоже фиксируем – вот вам и пробег.
С износом сложнее – придется каждый раз, после наработки двигателя на фиксированном режиме заданного времени, мотор разбирать и взвешивать основные детали, образующие узлы трения, это вкладыши подшипников и поршневые кольца. Плюс к тому – дополнительный промежуточный контроль, который будем проводить, определяя содержание продуктов износа в пробах масла. Нашли хром – стало быть, изнашиваются первые поршневые кольца; обнаружили железо – цилиндры и шейки вала; появилось олово – оно определит скорость износа вкладышей подшипников (поскольку входит в состав антифрикционного слоя); алюминий – следствие износа поршней и подшипников распределительного вала.
Двигатель отработал на заданных постоянных режимах с примерно одинаковой мощностью по 50 моточасов на каждом. Немного для ресурса, но мы получаем скорости износа, а дальше простой экстраполяцией оцениваем и примерный ресурс мотора. При этом обороты двигателя на циклах испытаний меняли от 1200 до 4000, то есть больше, чем в три раза. А потом нагрузку на мотор увеличили – и еще раз прогнали цикл. А потом – еще… Получилась объемистая таблица, где для каждой точки режима была записана своя скорость износа, причем разделенная по узлам – подшипникам и кольцам.


Так меняется средняя скорость износа первых поршневых колец двигателя при изменении режима работы

«Черные зоны» активного износа обнаружились сразу. Самые серьезные - когда на малые обороты накладывается большая нагрузка, и с высокой температурой масла. Скорость износа в таком режиме максимальна – как для подшипников, так и поршневых колец с цилиндрами. У двигателистов эта область называется зоной буксировочных режимов .
С ростом оборотов зона износа сразу стала уменьшаться и где-то при 1800 об/мин – исчезла. Все узлы трения «всплыли» на масляные пленки, прямой контакт между поверхностями деталей исчез – и с ним и скорость износа обратилась практически в ноль. Но надо понимать, что ноль скорости износа на графиках, не означает, что его нет, просто износ на этих режимах меньше погрешности измерения. На практике, конечно, не совсем так. Микрочастицы пыли, продуктов износа, сажи, проскочившие масляный фильтр, дадут какой-то износ и здесь.


А так – вкладышей шатунных подшипников

С увеличением частоты вращения коленчатого вала, зона износа снова начинает появляться и расти. В нашем случае – уже где-то с режимов 3800 об/мин при большой нагрузке, и дальше – прогрессирует. Причем, здесь износ подшипников и поршневых колец с цилиндрами ведет себя по-разному. Быстрее всего высокие обороты начинают чувствовать подшипники коленчатого вала. Почему? Дело в том, что с ростом оборотов резко увеличиваются нагрузки на подшипники – давление инерционных сил от оборотов зависит в квадрате. А вот кольца свой износ снова получают с больших частот вращения – где-то с 4500 об/мин, и там это связано в основном с ростом температуры масла.
Где же наиболее благоприятная зона эксплуатации мотора? У испытанных нами вазовских «восьмерок» (неважно, карбюраторных или впрысковых, восьми- или шестнадцатиклапанных), зона оптимальных оборотов, при которых мотор способен воспринимать любые нагрузки без какого-либо ущерба для себя, составляет примерно 2000…3000 об/мин. Тут мы учитываем, что исходное состояние двигателя может быть разным, да и моторные масла – тоже… Принцип простой – чем больше изношен двигатель, тем выше нижняя и тем ниже верхняя границы зон безызносной работы. Чем выше вязкость масла, тем с более низких оборотов можно безопасно грузить мотор. Но точных цифр нет – очень это индивидуально.
А как это соотнести с моторами другой размерности? Тут есть одна зацепка… В принципе, узлы трения мотора чувствуют не обороты, а линейные скорости перемещения поверхностей деталей. Есть такой параметр мотора – средняя скорость движения поршня , это произведение хода поршня на частоту вращения коленчатого вала, деленное на тридцать. Тот диапазон, который мы получили, примерно соответствует средним скоростям поршня 5…7 м/с. Это значит, что для «длинноходовых» двигателей, которых ход поршня больше диаметра, зона оптимальных режимов сместится в область более низких оборотов. Отсюда – и их «эластичность». У «коротокоходных» зона оптимальных режимов сместится в область более высоких оборотов.
Кстати, именно этот диапазон изменения средних скоростей поршня обычно закладывают для определения основных зон эксплуатации двигателей с большими ресурсами. Судовых дизелей, дизель-генераторов и т.д.
Так что – берите свою размерность, выполните элементарные действия, и приблизительно получите свой диапазон безопасных оборотов. Но это так, приблизительно…
А в целом, вывод понятен. Мотору вредны как низкооборотные режимы с тяжелыми нагрузками, так и экстремальные обороты. Александр Шабанов