» »

Силовая установка на перекиси водорода. Способ обеспечения улучшенного сгорания с участием углеводородных соединений

31.10.2019

Несомненно, двигатель - самая важная часть ракеты и одна из самых сложных. Задача двигателя - смешивать компоненты топлива, обеспечивать их сгорание и с большой скоростью выбрасывать получающиеся в процессе горения газы в заданном направлении, создавая реактивную тягу. В этой статье мы рассмотрим только используемые сейчас в ракетной технике химические двигатели. Существует несколько их видов: твердотопливные, жидкостные, гибридные и жидкостные однокомпонентные.


Любой ракетный двигатель состоит из двух основных частей: камера сгорания и сопло. С камерой сгорания, думаю, все понятно - это некий замкнутый объем, в котором происходит горение топлива. А сопло предназначено для разгона получающихся в процессе горения топлива газов до сверхзвуковой скорости в одном заданном направлении. Сопло состоит из конфузора, канала критики и диффузора.

Конфузор - это воронка, которая собирает газы из камеры сгорания и направляет их в канал критики.

Критика - самая узкая часть сопла. В ней газ разгоняется до скорости звука за счет высокого давления со стороны конфузора.

Диффузор - расширяющаяся часть сопла после критики. В ней происходит падение давления и температуры газа, за счет чего газ получает дополнительный разгон до сверхзвуковой скорости.

А теперь пройдемся по всем основным типам двигателей.

Начнем с простого. Самым простым по своей конструкции является РДТТ - ракетный двигатель на твердом топливе. Фактически это бочка, загруженная твердой топливно-окислительной смесью, имеющая сопло.

Камерой сгорания в таком двигателе является канал в топливном заряде, а горение происходит по всей площади поверхности этого канала. Нередко для упрощения заправки двигателя заряд делают составным из топливных шашек. Тогда горение происходит также и на поверхности торцов шашек.

Для получения разной зависимости тяги от времени применяют разные поперечные сечения канала:

РДТТ - самый древний вид ракетного двигателя. Его придумали еще в древнем Китае, но по сей день он находит применение как в боевых ракетах, так и в космической технике. Также этот двигатель ввиду своей простоты активно используется в любительском ракетостроении.

Первый американский космический корабль Меркурий был оборудован шестью РДТТ:

Три маленьких отводят корабль от ракеты-носителя после отделения от нее, а три больших - тормозят его для схода с орбиты.

Самый мощный РДТТ (и вообще самый мощный ракетный двигатель в истории) - это боковой ускоритель системы Спейс шаттл, развивавший максимальную тягу 1400 тонн. Именно два этих ускорителя давали столь эффектный столб огня при старте челноков. Это хорошо видно, например, на видеозаписи старта челнока Атлантис 11 мая 2009 года (миссия STS-125):

Эти же ускорители будут использованы в новой ракете SLS, которая будет выводить на орбиту новый американский корабль Орион. Сейчас можно увидеть записи с наземных испытаний ускорителя:

Также РДТТ установлены в системах аварийного спасения, предназначенных для увода космического корабля от ракеты в случае аварии. Вот, например, испытания САС корабля Меркурий 9 мая 1960 года:

На космических кораблях Союз кроме САС установлены двигатели мягкой посадки. Это тоже РДТТ, которые работают доли секунды, выдавая мощный импульс, гасящий скорость снижения корабля почти до нуля перед самым касанием поверхности Земли. Срабатывание этих двигателей видно на записи посадки корабля Союз ТМА-11М 14 мая 2014 года:

Главным недостатком РДТТ является невозможность управления тягой и невозможность повторного запуска двигателя после его останова. Да и останов двигателя в случае с РДТТ по факту остановом не является: двигатель либо прекращает работу по причине окончания топлива либо, в случае необходимости остановить его раньше, производится отсечка тяги: специальным пиропатроном отстреливается верхняя крышка двигателя и газы начинают выходить с обоих его торцов, обнуляя тягу.

Следующим мы рассмотрим гибридный двигатель . Его особенность в том, что используемые компоненты топлива находятся в разных агрегатных состояниях. Чаще всего используется твердое горючее и жидкий или газообразный окислитель.

Вот, как выглядит стендовое испытание такого двигателя:

Именно такой тип двигателя применен на первом частном космическом челноке SpaceShipOne.
В отличие от РДТТ ГРД можно повторно запускать и регулировать его тягу. Однако, не обошлось и без недостатков. Из-за большой камеры сгорания ГРД невыгодно ставить на большие ракеты. Также ГРД склонен к «жёсткому старту», когда в камере сгорания накопилось много окислителя, и при зажигании двигатель даёт за короткое время большой импульс тяги.

Ну а теперь рассмотрим самый широко применяемый в космонавтике тип ракетных двигателей. Это ЖРД - жидкостные ракетные двигатели.

В камере сгорания ЖРД смешиваются и сгорают две жидкости: горючее и окислитель. В космических ракетах применяются три топливно-окислительные пары: жидкий кислород + керосин (ракеты Союз), жидкий водород + жидкий кислород (вторая и третья ступени ракеты Сатурн-5, вторая ступень Чанчжэн-2, Спейс шаттл) и несимметричный диметилгидразин + тетраоксид азота (ракеты Протон и первая ступень Чанчжэн-2). Сейчас также проводятся испытания нового вида топлива - жидкого метана.

Преимуществами ЖРД являются малый вес, возможность регулирования тяги в широких пределах (дросселирование), возможность многократных запусков и больший удельный импульс по сравнению с двигателями других типов.

Главным недостатком таких двигателей является умопомрачительная сложность конструкции. Это у меня на схеме все просто выглядит, а на самом деле при конструировании ЖРД приходится сталкиваться с целым рядом проблем: необходимость хорошего перемешивания компонентов топлива, сложность поддержания высокого давления в камере сгорания, неравномерность горения топлива, сильный нагрев стенок камеры сгорания и сопла, сложности с зажиганием, коррозионное воздействие окислителя на стенки камеры сгорания.

Для решения всех этих проблем применяется множество сложных и не очень инженерных решений, отчего ЖРД зачастую выглядит как кошмарный сон пьяного сантехника, например, этот РД-108:

Камеры сгорания и сопла хорошо видны, но обратите внимание, сколько там всяких трубок, агрегатов и проводов! И все это нужно для стабильной и надежной работы двигателя. Там есть турбонасосный агрегат для подачи топлива и окислителя в камеры сгорания, газогенератор для привода турбонасосного агрегата, рубашки охлаждения камер сгорания и сопел, кольцевые трубки на соплах для создания охлаждающей завесы из топлива, патрубок для сброса отработанного генераторного газа и дренажные трубки.

Более подробно работу ЖРД мы рассмотрим в одной из следующих статей, а пока переходим к последнему типу двигателей: однокомпонентному .

Работа такого двигателя основана на каталитическом разложении пероксида водорода. Наверняка многие из вас помнят школьный опыт:

В школе используется аптечная трехпроцентная перекись, а вот реакция с использованием 37% перекиси:

Видно, как из горлышка колбы с силой вырывается струя пара (в смеси с кислородом, разумеется). Чем не реактивный двигатель?

Двигатели на перекиси водорода используют в системах ориентации космических аппаратов, когда большое значение тяги не нужно, а простота конструкции двигателя и его малая масса очень важны. Разумеется, используемая концентрация перекиси водорода далеко не 3% и даже не 30%. Стопроцентная концентрированная перекись дает в ходе реакции смесь кислорода с водяным паром, нагретую до полутора тысяч градусов, что создает высокое давление в камере сгорания и высокую скорость истечения газа из сопла.

Простота конструкции однокомпонентного двигателя не могла не привлечь к себе внимание ракетчиков-любителей. Вот пример любительского однокомпонентного двигателя.

Перекись водорода H2O2 - прозрачная бесцветная жидкость, заметно более вязкая, чем вода, с характерным, хотя и слабым запахом. Безводную перекись водорода трудно получить и хранить, и она является слишком дорогой для использования в качестве ракетного топлива. Вообще, дороговизна - один из главных недостатков перекиси водорода. Зато, по сравнению с другими окислителями, она более удобна и менее опасна в обращении.
Склонность перекиси к самопроизвольному разложению традиционно преувеличивается. Хотя мы и наблюдали снижение концентрации с 90% до 65% за два года хранения в литровых полиэтиленовых бутылках при комнатной температуре, но в больших объёмах и в более подходящей таре (например, в 200-литровой бочке из достаточно чистого алюминия) скорость разложения 90%-й перекиси составила бы менее 0,1% в год.
Плотность безводной перекиси водорода превышает 1450 кг/м3, что значительно больше, чем у жидкого кислорода, и немногим меньше, чем у азотнокислых окислителей. К сожалению, примеси воды быстро уменьшают её, так что 90%-й раствор имеет плотность 1380 кг/м3 при комнатной температуре, но это всё ещё очень неплохой показатель.
Перекись в ЖРД может применяться и как унитарное топливо, и как окислитель - например, в паре с керосином или спиртом. Ни керосин, ни спирт не самовоспламеняются с перекисью, и для обеспечения зажигания в горючее приходится добавлять катализатор разложения перекиси - тогда выделяющегося тепла достаточно для воспламенения. Для спирта подходящим катализатором является ацетат марганца (II). Для керосина тоже существуют соответствующие добавки, но их состав держится в секрете.
Применение перекиси как унитарного топлива ограничено её сравнительно низкими энергетическими характеристиками. Так, достигаемый удельный импульс в вакууме для 85%-й перекиси составляет лишь порядка 1300…1500 м/с (для разных степеней расширения), а для 98%-й - примерно 1600…1800 м/с. Тем не менее, перекись была применена сначала американцами для ориентации спускаемого аппарата космического корабля «Меркурий», затем, с той же целью, советскими конструкторами на СА КК «Союз». Кроме того перекись водорода используется как вспомогательное топливо для привода ТНА - впервые на ракете V-2, а затем на её «потомках», вплоть до Р-7. Все модификации «семёрок», включая самые современные, по-прежнему используют перекись для привода ТНА.
В качестве окислителя перекись водорода эффективна с различными горючими. Хотя она и даёт меньший удельный импульс, нежели чем жидкий кислород, но при применении перекиси высокой концентрации значения УИ превышают таковые для азотнокислотных окислителей с теми же горючими. Из всех ракет-носителей космического назначения лишь одна использовала перекись (в паре с керосином) - английская «Black Arrow». Параметры её двигателей были скромны - УИ двигателей I ступени немногим превышал 2200 м/с у земли и 2500 м/с в вакууме, - так как в этой ракете использовалась перекись всего лишь 85% концентрации. Сделано это было из-за того, что для обеспечения самовоспламенения перекись разлагалась на серебряном катализаторе. Более концентрированная перекись расплавила бы серебро.
Несмотря на то, что интерес к перекиси время от времени активизируется, перспективы её остаются туманными. Так, хотя советский ЖРД РД-502 (топливная пара - перекись плюс пентаборан) и продемонстрировал удельный импульс 3680 м/с, он так и остался экспериментальным.
В наших проектах мы ориентируемся на перекись ещё и потому, что двигатели на ней оказываются более «холодными», чем аналогичные двигатели с таким же УИ, но на других топливах. Например, продукты сгорания «карамельного» топлива имеют почти на 800° большую температуру при том же достигаемом УИ. Это связано с большим количеством воды в продуктах реакции перекиси и, как следствие, с низкой средней молекулярной массой продуктов реакции.

Первый образец нашего жидкостного ракетного двигателя (ЖРД), работающего на керосине и высококонцентрированной перекиси водорода, собран и готов к испытаниям на стенде в МАИ.

Все началось около года назад с создания 3D-моделей и выпуска конструкторской документации.

Готовые чертежи мы отправили нескольким подрядчикам, в том числе нашему основному партнеру по металлообработке «АртМеху». Все работы по камере дублировались, а изготовление форсунок вообще было получено нескольким поставщикам. К сожалению, тут мы столкнулись со всей сложностью изготовления казалось бы простых металлических изделий.

Особенно много усилий пришлось потратить на центробежные форсунки для распыления горючего в камере. На 3D-модели в разрезе они видны как цилиндры с гайками синего цвета на конце. А вот так они выглядят в металле (одна из форсунок показана с открученной гайкой, карандаш дан для масштаба).

Об испытаниях форсунок мы уже писали . В результате из многих десятков форсунок были выбраны семь. Через них в камеру будет поступать керосин. Сами керосиновые форсунки встроены в верхнюю часть камеры, которая является газификатором окислителя — областью, где пероксид водорода будет проходить через твердый катализатор и разлагаться на водяной пар и кислород. Затем получившаяся газовая смесь тоже поступит в камеру ЖРД.

Чтобы понять, почему изготовление форсунок вызвало такие сложности, надо заглянуть внутрь — внутри канала форсунки находится шнековый завихритель. То есть поступающий в форсунку керосин не просто ровно течет вниз, а закручивается. Шнековый завихритель имеет много мелких деталей, и от того, насколько точно удается выдержать их размеры, зависит ширина зазоров, через которые будет течь и распыляться в камеру керосин. Диапазон возможных исходов — от «через форсунку жидкость вообще не течет» до «распыляется равномерно во все стороны». Идеальный исход — керосин распыляется тонким конусом вниз. Примерно так, как на фото ниже.

Поэтому получение идеальной форсунки зависит не только от мастерства и добросовестности изготовителя, но и от используемого оборудования и, наконец, мелкой моторики специалиста. Несколько серий испытаний готовых форсунок под разным давлением позволили нам выбрать те, конус распыла которых близок к идеальному. На фото — завихритель, который не прошел отбор.

Посмотрим, как наш двигатель выглядит в металле. Вот крышка ЖРД с магистралями для поступления перекиси и керосина.

Если приподнять крышку, то можно увидеть, что через длинную трубку прокачивается перекись, а через короткую — керосин. Причем керосин распределяется по семи отверстиям.

Снизу к крышке присоединен газификатор. Посмотрим на него со стороны камеры.

То, что нам с этой точки представляется дном детали, на самом деле является ее верхней частью и будет присоединено к крышке ЖРД. Из семи отверстий керосин по форсункам польется в камеру, а из восьмого (слева, единственное несимметрично расположенное) на катализатор хлынет перекись. Точнее она хлынет не напрямую, а через специальную пластину с микроотверстиями, равномерно распределяющими поток.

На следующем фото эта пластина и форсунки для керосина уже вставлены в газификатор.

Почти весь свободный объем газификатора будет занят твердым катализатором, через который потечет пероксид водорода. Керосин будет идти по форсункам, не смешиваясь с перекисью.

На следующем фото мы видим, что газификатор уже закрыли крышкой со стороны камеры сгорания.

Через семь отверстий, заканчивающихся специальными гайками, потечет керосин, а через мелкие отверстия пойдет горячий парогаз, т.е. уже разложившаяся на кислород и водяной пар перекись.

Теперь давайте разберемся с тем, куда они потекут. А потекут они в камеру сгорания, которая представляет собой полый цилиндр, где керосин воспламеняется в кислороде, разогретом в катализаторе, и продолжает гореть.

Разогретые газы поступят в сопло, в котором разгонятся до высоких скоростей. Вот сопло с разных ракурсов. Большая (сужающаяся) часть сопла называется докритической, затем идет критическое сечение, а потом расширяющаяся часть — закритическая.

В итоге собранный двигатель выглядит так.

Красавец, правда?

Мы изготовим еще как минимум один экземпляр ЖРД из нержавеющей стали, а затем перейдем к изготовлению ЖРД из инконеля .

Внимательный читатель спросит, а для чего нужны штуцеры по бокам двигателя? У нашего ЖРД есть завеса — жидкость впрыскивается вдоль стенок камеры, чтобы та не перегревалась. В полете в завесу будет течь перекись либо керосин (уточним по результатам испытаний) из баков ракеты. Во время огневых испытаний на стенде в завесу может как керосин, так и перекись, а также вода или вообще ничего не подаваться (для коротких тестов). Именно для завесы и сделаны эти штуцера. Более того, завесы две: одна для охлаждения камеры, другая — докритической части сопла и критического сечения.

Если вы инженер или просто хотите узнать подробнее характеристики и устройство ЖРД, то далее специально для вас приведена инженерная записка.

ЖРД-100С

Двигатель предназначен для стендовой отработки основных конструктивных и технологических решений. Стендовые испытания двигателя запланированы на 2016 год.

Двигатель работает на стабильных высококипящих компонентах топлива. Расчетная тяга на уровне моря — 100 кгс, в вакууме — 120 кгс, расчетный удельный импульс тяги на уровне моря — 1840 м/с, в вакууме — 2200 м/с, расчетный удельный вес — 0,040 кг/кгс. Действительные характеристики двигателя будут уточняться в ходе испытаний.

Двигатель однокамерный, состоит из камеры, комплекта агрегатов системы автоматики, узлов и деталей общей сборки.

Двигатель крепится непосредственно к несущим элементам стенда через фланец в верхней части камеры.

Основные параметры камеры
топливо:
- окислитель — ПВ-85
- горючее — ТС-1
тяга, кгс:
- на уровне моря — 100,0
- в пустоте — 120,0
удельный импульс тяги, м/с:
- на уровне моря — 1840
- в пустоте — 2200
секундный расход, кг/с:
- окислителя — 0,476
- горючего — 0,057
весовое соотношение компонентов топлива (О:Г) — 8,43:1
коэффициент избытка окислителя — 1,00
давление газов, бар:
- в камере сгорания — 16
- в выходном сечении сопла — 0,7
масса камеры, кг — 4,0
внутренний диаметр двигателя, мм:
- цилиндрической части — 80,0
- в районе среза сопла — 44,3

Камера представляет собой сборную конструкцию и состоит из форсуночной головки с интегрированным в нее газификатором окислителя, цилиндрической камеры сгорания и профилированного сопла. Элементы камеры имеют фланцы и соединяются между собой болтами.

На головке размещены 88 однокомпонентных струйных форсунок окислителя и 7 однокомпонентных центробежных форсунок горючего. Форсунки расположены по концентрическим окружностям. Каждая форсунка горючего окружена десятью форсунками окислителя, оставшиеся форсунки окислителя размещены на свободном пространстве головки.

Охлаждение камеры внутреннее, двухступенчатое, осуществляется жидкостью (горючим или окислителем, выбор будет произведен по результатам стендовых испытаний), поступающей в полость камеры через два пояса завесы — верхний и нижний. Верхний пояс завесы выполнен в начале цилиндрической части камеры и обеспечивает охлаждение цилиндрической части камеры, нижний — выполнен в начале докритической части сопла и обеспечивает охлаждение докритической части сопла и области критического сечения.

В двигателе применяется самовоспламенение компонентов топлива. В процессе запуска двигателя обеспечивается опережение поступления окислителя в камеру сгорания. При разложении окислителя в газификаторе его температура поднимается до 900 K, что существенно выше температуры самовоспламенения горючего ТС-1 в атмосфере воздуха (500 К). Горючее, подаваемое в камеру в атмосферу горячего окислителя, самовоспламеняется, в дальнейшем процесс горения переходит в самоподдерживающийся.

Газификатор окислителя работает по принципу каталитического разложения высококонцентрированного пероксида водорода в присутствии твердого катализатора. Образующийся в результате разложения пероксида водорода парогаз (смесь водяного пара и газообразного кислорода) является окислителем и поступает в камеру сгорания.

Основные параметры газогенератора
компоненты:
- стабилизированный пероксид водорода (концентрация по весу), % — 85±0,5
расход пероксида водорода, кг/с — 0,476
удельная нагрузка, (кг/с пероксида водорода)/(кг катализатора) — 3,0
время непрерывной работы, не менее, с — 150
параметры парогаза на выходе из газификатора:
- давление, бар — 16
- температура, К — 900

Газификатор интегрирован в конструкцию форсуночной головки. Ее стакан, внутреннее и среднее днища образуют полость газификатора. Днища связаны между собой форсунками горючего. Расстояние между днищами регулируется высотой стакана. Объем между форсунками горючего заполнен твердым катализатором.

ПЕРЕКИСЬ ВОДОРОДА H 2 O 2 - простейший представитель перекисей; высококипяший окислитель или однокомпонентное ракетное топливо , а также источник парогаза для привода ТНА. Используется в виде водного раствора высокой (до 99%) концентрации. Прозрачная жидкость без цвета и запаха с «металлическим» привкусом. Плотность 1448 кг/м 3 (при 20°С), t пл ~ 0°С, t кип ~ 150°С. Слабо токсична, при попадании на кожу вызывает ожоги, с некоторыми органическими веществами образует взрывчатые смеси. Чистые растворы достаточно стабильны (скорость разложения обычно не превышает 0,6% в год); в присутствии следов ряда тяжёлых металлов (например, медь, железо, марганец, серебро) и других примесей разложение ускоряется и может переходить во взрыв; для повышения устойчивости при длительном хранении в перекись водорода вводят стабилизаторы (соединения фосфора и олова). Под воздействием катализаторов (например, продуктов коррозии железа) разложение перекиси водорода на кислород и воду идёт с выделением энергии, при этом температура продуктов реакции (парогаза) зависит от концентрации перекиси водорода : 560°С при 80%-ной концентрации и 1000°С при 99%-ной. Лучше всего совместима с нержавеющими сталями и чистым алюминием. В промышленности получают гидролизом надсерной кислоты H 2 S 2 O 8 , образующейся при электролизе серной кислоты H 2 SO 4 . Концентрированная перекись водорода нашла широкое применение в ракетной технике. Перекись водорода является источником парогаза для привода ТНА в ЖРД ряда ракет (Фау-2, «Редстоун», «Викинг», «Восток» и др.), окислителем ракетного топлива в ракетах («Блэк эрроу» и др.) и самолётах (Ме-163, Х-1, Х-15 и др.), однокомпонентным топливом в двигателях космических аппаратов («Союз», «Союз Т» и др.). Перспективно её применение в паре с углеводородами, пентабораном и гидридом бериллия.

1 .. 42 > .. >> Следующая
Низкая температура застывания спирта позволяет использовать его в широком диапазоне температур окружающей среды.
Спирт производится в очень больших количествах и не является дефицитным горючим. На конструкционные материалы спирт не оказывает агрессивного воздействия. Это позволяет применять для спиртовых баков и магистралей сравнительно дешевые материалы.
Заменителем этилового спирта может служить метиловый спирт, дающий с кислородом топливо несколько худшего качества. Метиловый спирт смешивается с этиловым в любых пропорциях, что позволяет использовать его при недостатке этилового спирта и добавлять в некоторой доле в горючее. Топливо на основе жидкого кислорода применяется почти исключительно в ракетах дальнего действия, допускающих и даже, вследствие большого веса, требующих заправки ракеты компонентами на месте старта.
Перекись водорода
Перекись водорода H2O2 в чистом виде (т. е. 100%-ной концентрации) в технике не применяется, так как является чрезвычайно нестойким продуктом, способным к самопроизвольному разложению, легко переходящему во взрыв под влиянием всяких, казалось бы, незначительных внешних воздействий: удара, освещения, малейшего загрязнения органическими веществами и примесями некоторых металлов.
В ракетной технике"применяются более стойкие высококонцен-трпрованные (чаще всего 80"%-ной концентрации) растворы перекц си водорода в воде. Для повышения стойкости к перекиси водорода прибавляют небольшие количества веществ, препятствующих ее самопроизвольному разложению (например, фосфорной кислоты). Применение 80"%-ной перекиси водорода требует в настоящее время принятия лишь обычных мер предосторожности, необходимых при обращении с сильными окислителями. Перекись водорода такой концентрации является прозрачной, слегка голубоватой жидкостью с температурой замерзания -25° С.
Перекись водорода при разложении ее на кислород и водяные пары выделяет тепло. Это выделение тепла объясняется тем, что теплота образования перекиси составляет - 45,20 ккал/г-моль, в то
126
Гл. IV. Топлива ракетных двигателей
время как теплота образования воды равняется-68,35 ккал/г-моль. Таким образом, при разложении перекиси по формуле H2O2 = --H2O+V2O0 выделяется химическая энергия, равная разности 68,35-45,20=23,15 ккал/г-моль, или 680 ккал/кг.
Перекись водорода 80э/о-ной концентрации обладает способностью к разложению в присутствии катализаторов с выделением тепла в количестве 540 ккал/кг и с выделением свободного кислорода, который может быть использован для окисления горючего. Перекись водорода обладает значительным удельным весом (1,36 кг/л для 80%-ной концентрации). Использовать перекись водорода как охладитель нельзя, так как при нагревании она не закипает, а сразу разлагается.
В качестве материалов для баков и трубопроводов двигателей, работающих на перекиси, могут служить нержавеющая сталь и очень чистый (с содержанием примесей до 0,51%) алюминий. Совершенно недопустимо применение меди и других тяжелых металлов. Медь является сильным катализатором, способствующим разложению перекиои водорода. Для прокладок и уплотнений могут применяться некоторые виды пластмасс. Попадание концентрированной перекиси водорода на кожу вызывает тяжелые ожоги. Органические вещества при попадании на них перекиси водорода загораются.
Топлива на основе перекиси водорода
На основе перекиси водорода создано два типа топлив.
Топлива первого типа представляют собой топлива раздельной подачи, в которых кислород, выделяющийся при разложении перекиси водорода, используется для сжигания горючего. Примером может служить топливо, применявшееся в описанном выше (стр. 95) двигателе самолета-перехватчика. Оно состояло из перекиси водорода 80%-ной концентрации и смеси гидразингидрата (N2H4 H2O) с метиловым спиртом. При добавлении в горючее специального катализатора это топливо становится самовоспламеняющимся. Сравнительно низкая теплотворная способность (1020 ккал/кг), а также малый молекулярный вес продуктов сгорания определяют низкую температуру сгорания, что облегчает работу двигателя. Однако из-за малой теплотворной способности двигатель имеет низкую удельную тягу (190 кгсек/кг).
С водой и спиртом перекись водорода может образовывать относительно взрывобезопасные тройные смеси, которые являются примером однокомпонентного топлива. Теплотворная способность таких взрывобезопасных смесей относительно невелика: 800-900 ккал/кг. Поэтому в качестве основного топлива для ЖРД они едва ли будут применяться. Такие смеси могут использоваться в парогазогене-раторах.
2. Современные топлива ракетных двигателей
127
Реакция разложения концентрированной перекиси, как уже говорилось, широко используется в ракетной технике для получения парогаза, являющегося рабочим телом турбины при насосной подаче.
Известны также двигатели, в которых тепло разложения перекиси служило для создания силы тяги. Удельная тяга таких двигателей низкая (90-100 кгсек/кг).
Для разложения перекиси используют два типа катализаторов: жидкий (раствор перманганата калия KMnO4) или твердый. Применение последнего является более предпочтительным, так как делает излишней систему подачи жидкого катализатора в реактор.