» »

Пиротехническая химия: Введение в ракетную технику - Федосьев В.И. Беседы о ракетных двигателях Планы на наддув насосом

31.10.2019

ПЕРЕКИСЬ ВОДОРОДА H 2 O 2 - простейший представитель перекисей; высококипяший окислитель или однокомпонентное ракетное топливо , а также источник парогаза для привода ТНА. Используется в виде водного раствора высокой (до 99%) концентрации. Прозрачная жидкость без цвета и запаха с «металлическим» привкусом. Плотность 1448 кг/м 3 (при 20°С), t пл ~ 0°С, t кип ~ 150°С. Слабо токсична, при попадании на кожу вызывает ожоги, с некоторыми органическими веществами образует взрывчатые смеси. Чистые растворы достаточно стабильны (скорость разложения обычно не превышает 0,6% в год); в присутствии следов ряда тяжёлых металлов (например, медь, железо, марганец, серебро) и других примесей разложение ускоряется и может переходить во взрыв; для повышения устойчивости при длительном хранении в перекись водорода вводят стабилизаторы (соединения фосфора и олова). Под воздействием катализаторов (например, продуктов коррозии железа) разложение перекиси водорода на кислород и воду идёт с выделением энергии, при этом температура продуктов реакции (парогаза) зависит от концентрации перекиси водорода : 560°С при 80%-ной концентрации и 1000°С при 99%-ной. Лучше всего совместима с нержавеющими сталями и чистым алюминием. В промышленности получают гидролизом надсерной кислоты H 2 S 2 O 8 , образующейся при электролизе серной кислоты H 2 SO 4 . Концентрированная перекись водорода нашла широкое применение в ракетной технике. Перекись водорода является источником парогаза для привода ТНА в ЖРД ряда ракет (Фау-2, «Редстоун», «Викинг», «Восток» и др.), окислителем ракетного топлива в ракетах («Блэк эрроу» и др.) и самолётах (Ме-163, Х-1, Х-15 и др.), однокомпонентным топливом в двигателях космических аппаратов («Союз», «Союз Т» и др.). Перспективно её применение в паре с углеводородами, пентабораном и гидридом бериллия.


Новизной двигателей Вальтера было использование в качестве энергоносителя и одновременно окислителя концентрированной перекиси водорода, разлагаемого с помощью различных катализаторов, главным из которых был перманганат натрия, калия или кальция. В сложных реакторах двигателей Вальтера в качестве катализатора применялось и чистое пористое серебро.

При разложении перекиси водорода на катализаторе выделяется большое количество теплоты, причём образующаяся в результате реакции разложения перекиси водорода вода превращается в пар, а в смеси с одновременно выделяющимся во время реакции атомарным кислородом образует так называемый «парогаз». Температура парогаза, в зависимости от степени начальной концентрации перекиси водорода, может достигать 700 С°-800 С°.

Концентрированная примерно до 80-85 % перекись водорода в разных немецких документах носила название «оксилин», «топливо Т» (T-stoff), «аурол», «пергидроль». Раствор катализатора имел название Z-stoff.

Топливо для двигателей Вальтера, состоявшее из T-stoff и Z-stoff, называлось однокомпонентным, поскольку катализатор не является компонентом.
...
...
...
Двигатели Вальтера в СССР

После войны на СССР выразил желание работать один из заместителей Гельмута Вальтера некий Франц Статецки. Статецки и группа «технической разведки» по вывозу из Германии военных технологий под руководством адмирала Л. А. Коршунова, нашли в Германии фирму «Брюнер-Канис-Рейдер», которая была смежником в изготовлении турбинных установок Вальтера.

Для копирования немецкой подводной лодки с силовой установкой Вальтера сначала в Германии, а затем в СССР под руководством А. А. Антипина было создано «бюро Антипина», организация, из которой стараниями главного конструктора подводных лодок (капитана I ранга) А. А. Антипина образовались ЛПМБ «Рубин» и СПМБ «Малахит».

Задачей бюро было копирование достижений немцев по новым подводным лодкам (дизельным, электрическим, парогазотурбинным), но основной задачей было повторение скоростей немецких подводных лодок с циклом Вальтера.

В результате проведённых работ удалось полностью восстановить документацию, изготовить (частично из немецких, частично из вновь изготовленных узлов) и испытать парогазотурбинную установку немецких лодок серии XXVI.

После этого было решено строить советскую подлодку с двигателем Вальтера. Тема разработки подлодок с ПГТУ Вальтера получила название проект 617.

Александр Тыклин, описывая биографию Антипина, писал: …Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И. В. Курчатовым и А. П. Александровым - готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…

В 1951 году лодка проекта 617, названная С-99, была заложена в Ленинграде на заводе № 196. 21 апреля 1955 года, лодку вывели на государственные испытания, законченные 20 марта 1956 года. В результатах испытания указано: …На подводной лодке достигнута впервые скорость подводного хода в 20 узлов в течение 6 часов….

В 1956-1958 годах были спроектированы большие лодки проект 643 с надводным водоизмещением в 1865 т и уже с двумя ПГТУ Вальтера. Однако в связи с созданием эскизного проекта первых советских подлодок с атомными силовыми установками проект был закрыт. Но исследования ПГТУ лодки С-99 не прекратились, а были переведены в русло рассмотрения возможности применения двигателя Вальтера в разрабатываемой гигантской торпеде Т-15 с атомным зарядом, предложенной Сахаровым для уничтожения военно-морских баз и портов США. Т-15 должна была иметь длину в 24 м, дальность подводного хода до 40-50 миль, и нести термоядерную боеголовку, способную вызывать искусственное цунами для уничтожения прибрежных городов США.

После войны в СССР были доставлены торпеды с двигателями Вальтера, и НИИ-400 приступило к разработке отечественной дальноходной бесследной скоростной торпеды. В 1957 году были завершены государственные испытания торпед ДБТ. Торпеда ДБТ принята на вооружение в декабре 1957 года, под шифром 53-57. Торпеда 53-57 калибром 533 мм, имела вес около 2000 кг, скорость 45 узлов при дальности хода до 18 км. Боеголовка торпеды весила 306 кг.

Несомненно, двигатель - самая важная часть ракеты и одна из самых сложных. Задача двигателя - смешивать компоненты топлива, обеспечивать их сгорание и с большой скоростью выбрасывать получающиеся в процессе горения газы в заданном направлении, создавая реактивную тягу. В этой статье мы рассмотрим только используемые сейчас в ракетной технике химические двигатели. Существует несколько их видов: твердотопливные, жидкостные, гибридные и жидкостные однокомпонентные.


Любой ракетный двигатель состоит из двух основных частей: камера сгорания и сопло. С камерой сгорания, думаю, все понятно - это некий замкнутый объем, в котором происходит горение топлива. А сопло предназначено для разгона получающихся в процессе горения топлива газов до сверхзвуковой скорости в одном заданном направлении. Сопло состоит из конфузора, канала критики и диффузора.

Конфузор - это воронка, которая собирает газы из камеры сгорания и направляет их в канал критики.

Критика - самая узкая часть сопла. В ней газ разгоняется до скорости звука за счет высокого давления со стороны конфузора.

Диффузор - расширяющаяся часть сопла после критики. В ней происходит падение давления и температуры газа, за счет чего газ получает дополнительный разгон до сверхзвуковой скорости.

А теперь пройдемся по всем основным типам двигателей.

Начнем с простого. Самым простым по своей конструкции является РДТТ - ракетный двигатель на твердом топливе. Фактически это бочка, загруженная твердой топливно-окислительной смесью, имеющая сопло.

Камерой сгорания в таком двигателе является канал в топливном заряде, а горение происходит по всей площади поверхности этого канала. Нередко для упрощения заправки двигателя заряд делают составным из топливных шашек. Тогда горение происходит также и на поверхности торцов шашек.

Для получения разной зависимости тяги от времени применяют разные поперечные сечения канала:

РДТТ - самый древний вид ракетного двигателя. Его придумали еще в древнем Китае, но по сей день он находит применение как в боевых ракетах, так и в космической технике. Также этот двигатель ввиду своей простоты активно используется в любительском ракетостроении.

Первый американский космический корабль Меркурий был оборудован шестью РДТТ:

Три маленьких отводят корабль от ракеты-носителя после отделения от нее, а три больших - тормозят его для схода с орбиты.

Самый мощный РДТТ (и вообще самый мощный ракетный двигатель в истории) - это боковой ускоритель системы Спейс шаттл, развивавший максимальную тягу 1400 тонн. Именно два этих ускорителя давали столь эффектный столб огня при старте челноков. Это хорошо видно, например, на видеозаписи старта челнока Атлантис 11 мая 2009 года (миссия STS-125):

Эти же ускорители будут использованы в новой ракете SLS, которая будет выводить на орбиту новый американский корабль Орион. Сейчас можно увидеть записи с наземных испытаний ускорителя:

Также РДТТ установлены в системах аварийного спасения, предназначенных для увода космического корабля от ракеты в случае аварии. Вот, например, испытания САС корабля Меркурий 9 мая 1960 года:

На космических кораблях Союз кроме САС установлены двигатели мягкой посадки. Это тоже РДТТ, которые работают доли секунды, выдавая мощный импульс, гасящий скорость снижения корабля почти до нуля перед самым касанием поверхности Земли. Срабатывание этих двигателей видно на записи посадки корабля Союз ТМА-11М 14 мая 2014 года:

Главным недостатком РДТТ является невозможность управления тягой и невозможность повторного запуска двигателя после его останова. Да и останов двигателя в случае с РДТТ по факту остановом не является: двигатель либо прекращает работу по причине окончания топлива либо, в случае необходимости остановить его раньше, производится отсечка тяги: специальным пиропатроном отстреливается верхняя крышка двигателя и газы начинают выходить с обоих его торцов, обнуляя тягу.

Следующим мы рассмотрим гибридный двигатель . Его особенность в том, что используемые компоненты топлива находятся в разных агрегатных состояниях. Чаще всего используется твердое горючее и жидкий или газообразный окислитель.

Вот, как выглядит стендовое испытание такого двигателя:

Именно такой тип двигателя применен на первом частном космическом челноке SpaceShipOne.
В отличие от РДТТ ГРД можно повторно запускать и регулировать его тягу. Однако, не обошлось и без недостатков. Из-за большой камеры сгорания ГРД невыгодно ставить на большие ракеты. Также ГРД склонен к «жёсткому старту», когда в камере сгорания накопилось много окислителя, и при зажигании двигатель даёт за короткое время большой импульс тяги.

Ну а теперь рассмотрим самый широко применяемый в космонавтике тип ракетных двигателей. Это ЖРД - жидкостные ракетные двигатели.

В камере сгорания ЖРД смешиваются и сгорают две жидкости: горючее и окислитель. В космических ракетах применяются три топливно-окислительные пары: жидкий кислород + керосин (ракеты Союз), жидкий водород + жидкий кислород (вторая и третья ступени ракеты Сатурн-5, вторая ступень Чанчжэн-2, Спейс шаттл) и несимметричный диметилгидразин + тетраоксид азота (ракеты Протон и первая ступень Чанчжэн-2). Сейчас также проводятся испытания нового вида топлива - жидкого метана.

Преимуществами ЖРД являются малый вес, возможность регулирования тяги в широких пределах (дросселирование), возможность многократных запусков и больший удельный импульс по сравнению с двигателями других типов.

Главным недостатком таких двигателей является умопомрачительная сложность конструкции. Это у меня на схеме все просто выглядит, а на самом деле при конструировании ЖРД приходится сталкиваться с целым рядом проблем: необходимость хорошего перемешивания компонентов топлива, сложность поддержания высокого давления в камере сгорания, неравномерность горения топлива, сильный нагрев стенок камеры сгорания и сопла, сложности с зажиганием, коррозионное воздействие окислителя на стенки камеры сгорания.

Для решения всех этих проблем применяется множество сложных и не очень инженерных решений, отчего ЖРД зачастую выглядит как кошмарный сон пьяного сантехника, например, этот РД-108:

Камеры сгорания и сопла хорошо видны, но обратите внимание, сколько там всяких трубок, агрегатов и проводов! И все это нужно для стабильной и надежной работы двигателя. Там есть турбонасосный агрегат для подачи топлива и окислителя в камеры сгорания, газогенератор для привода турбонасосного агрегата, рубашки охлаждения камер сгорания и сопел, кольцевые трубки на соплах для создания охлаждающей завесы из топлива, патрубок для сброса отработанного генераторного газа и дренажные трубки.

Более подробно работу ЖРД мы рассмотрим в одной из следующих статей, а пока переходим к последнему типу двигателей: однокомпонентному .

Работа такого двигателя основана на каталитическом разложении пероксида водорода. Наверняка многие из вас помнят школьный опыт:

В школе используется аптечная трехпроцентная перекись, а вот реакция с использованием 37% перекиси:

Видно, как из горлышка колбы с силой вырывается струя пара (в смеси с кислородом, разумеется). Чем не реактивный двигатель?

Двигатели на перекиси водорода используют в системах ориентации космических аппаратов, когда большое значение тяги не нужно, а простота конструкции двигателя и его малая масса очень важны. Разумеется, используемая концентрация перекиси водорода далеко не 3% и даже не 30%. Стопроцентная концентрированная перекись дает в ходе реакции смесь кислорода с водяным паром, нагретую до полутора тысяч градусов, что создает высокое давление в камере сгорания и высокую скорость истечения газа из сопла.

Простота конструкции однокомпонентного двигателя не могла не привлечь к себе внимание ракетчиков-любителей. Вот пример любительского однокомпонентного двигателя.

1 .. 42 > .. >> Следующая
Низкая температура застывания спирта позволяет использовать его в широком диапазоне температур окружающей среды.
Спирт производится в очень больших количествах и не является дефицитным горючим. На конструкционные материалы спирт не оказывает агрессивного воздействия. Это позволяет применять для спиртовых баков и магистралей сравнительно дешевые материалы.
Заменителем этилового спирта может служить метиловый спирт, дающий с кислородом топливо несколько худшего качества. Метиловый спирт смешивается с этиловым в любых пропорциях, что позволяет использовать его при недостатке этилового спирта и добавлять в некоторой доле в горючее. Топливо на основе жидкого кислорода применяется почти исключительно в ракетах дальнего действия, допускающих и даже, вследствие большого веса, требующих заправки ракеты компонентами на месте старта.
Перекись водорода
Перекись водорода H2O2 в чистом виде (т. е. 100%-ной концентрации) в технике не применяется, так как является чрезвычайно нестойким продуктом, способным к самопроизвольному разложению, легко переходящему во взрыв под влиянием всяких, казалось бы, незначительных внешних воздействий: удара, освещения, малейшего загрязнения органическими веществами и примесями некоторых металлов.
В ракетной технике"применяются более стойкие высококонцен-трпрованные (чаще всего 80"%-ной концентрации) растворы перекц си водорода в воде. Для повышения стойкости к перекиси водорода прибавляют небольшие количества веществ, препятствующих ее самопроизвольному разложению (например, фосфорной кислоты). Применение 80"%-ной перекиси водорода требует в настоящее время принятия лишь обычных мер предосторожности, необходимых при обращении с сильными окислителями. Перекись водорода такой концентрации является прозрачной, слегка голубоватой жидкостью с температурой замерзания -25° С.
Перекись водорода при разложении ее на кислород и водяные пары выделяет тепло. Это выделение тепла объясняется тем, что теплота образования перекиси составляет - 45,20 ккал/г-моль, в то
126
Гл. IV. Топлива ракетных двигателей
время как теплота образования воды равняется-68,35 ккал/г-моль. Таким образом, при разложении перекиси по формуле H2O2 = --H2O+V2O0 выделяется химическая энергия, равная разности 68,35-45,20=23,15 ккал/г-моль, или 680 ккал/кг.
Перекись водорода 80э/о-ной концентрации обладает способностью к разложению в присутствии катализаторов с выделением тепла в количестве 540 ккал/кг и с выделением свободного кислорода, который может быть использован для окисления горючего. Перекись водорода обладает значительным удельным весом (1,36 кг/л для 80%-ной концентрации). Использовать перекись водорода как охладитель нельзя, так как при нагревании она не закипает, а сразу разлагается.
В качестве материалов для баков и трубопроводов двигателей, работающих на перекиси, могут служить нержавеющая сталь и очень чистый (с содержанием примесей до 0,51%) алюминий. Совершенно недопустимо применение меди и других тяжелых металлов. Медь является сильным катализатором, способствующим разложению перекиои водорода. Для прокладок и уплотнений могут применяться некоторые виды пластмасс. Попадание концентрированной перекиси водорода на кожу вызывает тяжелые ожоги. Органические вещества при попадании на них перекиси водорода загораются.
Топлива на основе перекиси водорода
На основе перекиси водорода создано два типа топлив.
Топлива первого типа представляют собой топлива раздельной подачи, в которых кислород, выделяющийся при разложении перекиси водорода, используется для сжигания горючего. Примером может служить топливо, применявшееся в описанном выше (стр. 95) двигателе самолета-перехватчика. Оно состояло из перекиси водорода 80%-ной концентрации и смеси гидразингидрата (N2H4 H2O) с метиловым спиртом. При добавлении в горючее специального катализатора это топливо становится самовоспламеняющимся. Сравнительно низкая теплотворная способность (1020 ккал/кг), а также малый молекулярный вес продуктов сгорания определяют низкую температуру сгорания, что облегчает работу двигателя. Однако из-за малой теплотворной способности двигатель имеет низкую удельную тягу (190 кгсек/кг).
С водой и спиртом перекись водорода может образовывать относительно взрывобезопасные тройные смеси, которые являются примером однокомпонентного топлива. Теплотворная способность таких взрывобезопасных смесей относительно невелика: 800-900 ккал/кг. Поэтому в качестве основного топлива для ЖРД они едва ли будут применяться. Такие смеси могут использоваться в парогазогене-раторах.
2. Современные топлива ракетных двигателей
127
Реакция разложения концентрированной перекиси, как уже говорилось, широко используется в ракетной технике для получения парогаза, являющегося рабочим телом турбины при насосной подаче.
Известны также двигатели, в которых тепло разложения перекиси служило для создания силы тяги. Удельная тяга таких двигателей низкая (90-100 кгсек/кг).
Для разложения перекиси используют два типа катализаторов: жидкий (раствор перманганата калия KMnO4) или твердый. Применение последнего является более предпочтительным, так как делает излишней систему подачи жидкого катализатора в реактор.

Перекись водорода H 2 O 2 - прозрачная бесцветная жидкость, заметно более вязкая, чем вода, с характерным, хотя и слабым запахом. Безводную перекись водорода трудно получить и хранить, и она является слишком дорогой для использования в качестве ракетного топлива. Вообще, дороговизна - один из главных недостатков перекиси водорода. Зато, по сравнению с другими окислителями, она более удобна и менее опасна в обращении.
Склонность перекиси к самопроизвольному разложению традиционно преувеличивается. Хотя мы и наблюдали снижение концентрации с 90% до 65% за два года хранения в литровых полиэтиленовых бутылках при комнатной температуре, но в больших объёмах и в более подходящей таре (например, в 200-литровой бочке из достаточно чистого алюминия) скорость разложения 90%-й перекиси составила бы менее 0,1% в год.
Плотность безводной перекиси водорода превышает 1450 кг/м 3 , что значительно больше, чем у жидкого кислорода, и немногим меньше, чем у азотнокислых окислителей. К сожалению, примеси воды быстро уменьшают её, так что 90%-й раствор имеет плотность 1380 кг/м 3 при комнатной температуре, но это всё ещё очень неплохой показатель.
Перекись в ЖРД может применяться и как унитарное топливо, и как окислитель - например, в паре с керосином или спиртом. Ни керосин, ни спирт не самовоспламеняются с перекисью, и для обеспечения зажигания в горючее приходится добавлять катализатор разложения перекиси - тогда выделяющегося тепла достаточно для воспламенения. Для спирта подходящим катализатором является ацетат марганца (II). Для керосина тоже существуют соответствующие добавки, но их состав держится в секрете.
Применение перекиси как унитарного топлива ограничено её сравнительно низкими энергетическими характеристиками. Так, достигаемый удельный импульс в вакууме для 85%-й перекиси составляет лишь порядка 1300…1500 м/с (для разных степеней расширения), а для 98%-й - примерно 1600…1800 м/с. Тем не менее, перекись была применена сначала американцами для ориентации спускаемого аппарата космического корабля «Меркурий», затем, с той же целью, советскими конструкторами на СА КК «Союз». Кроме того перекись водорода используется как вспомогательное топливо для привода ТНА - впервые на ракете V-2 , а затем на её «потомках», вплоть до Р-7 . Все модификации «семёрок», включая самые современные, по-прежнему используют перекись для привода ТНА.
В качестве окислителя перекись водорода эффективна с различными горючими. Хотя она и даёт меньший удельный импульс, нежели чем жидкий кислород, но при применении перекиси высокой концентрации значения УИ превышают таковые для азотнокислотных окислителей с теми же горючими. Из всех ракет-носителей космического назначения лишь одна использовала перекись (в паре с керосином) - английская «Black Arrow». Параметры её двигателей были скромны - УИ двигателей I ступени немногим превышал 2200 м/с у земли и 2500 м/с в вакууме, - так как в этой ракете использовалась перекись всего лишь 85% концентрации. Сделано это было из-за того, что для обеспечения самовоспламенения перекись разлагалась на серебряном катализаторе. Более концентрированная перекись расплавила бы серебро.
Несмотря на то, что интерес к перекиси время от времени активизируется, перспективы её остаются туманными. Так, хотя советский ЖРД РД-502 (топливная пара - перекись плюс пентаборан) и продемонстрировал удельный импульс 3680 м/с, он так и остался экспериментальным.
В наших проектах мы ориентируемся на перекись ещё и потому, что двигатели на ней оказываются более «холодными», чем аналогичные двигатели с таким же УИ, но на других топливах. Например, продукты сгорания «карамельного» топлива имеют почти на 800° большую температуру при том же достигаемом УИ. Это связано с большим количеством воды в продуктах реакции перекиси и, как следствие, с низкой средней молекулярной массой продуктов реакции.