» »

Момент инерции кривошипно шатунного механизма. Кривошипно-шатунный механизм

03.03.2021

Кинематические исследования и динамический расчет кривошипно-шатунного механизма необходимы для выяснения сил, действующих на детали и элементы деталей двигателя, основные параметры которых можно определить расчетом.

Рис. 1. Центральный и дезаксиальный

кривошипно-шатунные механизмы

Детальные исследования кинематики и динамики кривошипно-шатунного механизма двигателя из-за переменного режима работы двигателя очень сложны. При определении нагрузок на детали двигателя пользуются упрощенными формулами, полученными для условия равномерного вращения кривошипа, которые дают при расчете достаточную точность и существенно облегчают расчет.

Принципиальные схемы кривошипно-шатунного механизма двигателей автотракторного типа показаны: на.рис. 1, а - центральный кривошипно-шатунный механизм, у которого ось цилиндра пересекает ось кривошипа, и на рис. 1, б - дезаксиальный, у которого ось цилиндра не пересекает ось коленчатого вала. Ось 3 цилиндра смещена относительно оси коленчатого вала на величину, а. Такое смещение одной из осей относительно другой позволяет, несколько изменить давление поршня на стенку цилиндрами уменьшить скорость поршня у в. м. т. (верхней мертвой точки), что благоприятно сказывается на процессе сгорания п уменьшает, шум при переносе нагрузки от одной стенки цилиндра на другую при изменении направления движения поршня

На схемах приняты следующие обозначения: - угол поворота кривошипа, отсчитываемый от в. м.т. в направлении вращения кривошипа (коленчатого вала); S = 2R - ход поршня; R - радиус кривошипа; L - длина шатуна; - отношение радиуса кривошипа к длине шатуна. У современных автомобильных двигателей , у тракторных двигателей ; - угловая скорость вращения кривошипа; а - смещение оси цилиндра от оси коленчатого вала; - угол отклонения шатуна от оси цилиндра; для современных автотракторных двигателей

У современных двигателей относительное смещение осей принимают . При таком смещении рассчитывают двигатель с дезаксиальным механизмом так же, как и с центральным кривошипным механизмом.

В кинематических расчетах определяют -перемещение, скорость и ускорение поршня.

Перемещение поршня вычисляют по одной из приведенных формул:

Величины в квадратных и фигурных скобках для различных значений и см. в приложениях.

Перемещение поршня S представляет собой сумму двух S 1 и S 2 гармонических составляющих: ; .

Кривая, описывающая перемещение поршня в зависимости от изменения , представляет собой сумму п+1 . гармонических составляющих. Эти составляющие выше второй оказывают очень малое влияние на значение S, поэтому в расчетах ими пренебрегают, ограничиваясь только S = S 1 + S 2 .

Производная по времени выражения S представляет собой скорость перемещения поршня

здесь v и - соответственно первая и вторая гармонические составляющие.

Вторая гармоническая составляющая, учитывающая конечную длину шатуна, приводит к смещению к в. м. т., т. е.

Одним из, параметров, характеризующих конструкцию двигателя, является средняя скорость поршня (м/с)

где п - частота вращения коленчатого вала в минуту.

Средняя скорость движения поршня у современных автотракторных двигателе колеблется в пределах м/с. Большие значения относятся к двигателям легковых автомобилей, меньшие - к тракторным.

Так как износ поршневой группы приблизительно пропорционален средней скорости поршня, то для увеличения долговечности двигатели стремятся делать с. меньшей средней скоростью поршня.

Для автотракторных, двигателей: ; при при

при

Производная скорости поршня по времени - ускорение поршня

2.1.1 Выбор л и длинны Lш шатуна

В целях уменьшения высоты двигателя без значительного увеличения инерционных и нормальных сил величина отношения радиуса кривошипа к длине шатуна была принята в тепловом расчете л = 0,26 двигателя прототипа.

При этих условиях

где R радиус кривошипа - R = 70 мм.

Результаты расчета перемещения поршня, проведенные на ЭВМ, приведены в приложении В.

2.1.3 Угловая скорость вращения коленчатого вала щ, рад/с

2.1.4 Скорость поршня Vп, м/с

2.1.5 Ускорение поршня j, м/с2

Результаты расчета скорости и ускорения поршня приведены в Приложении В.

Динамика

2.2.1 Общие сведения

Динамический расчет кривошипно-шатунного механизма заключается в определении суммарных сил и моментов, возникающих от давления газов и от сил инерции. По этим силам производятся расчеты основных деталей на прочность и износ, а также определение неравномерности крутящего момента и степени неравномерности хода двигателя.

Во время работы двигателя на детали кривошипно-шатунного механизма действуют: силы от давления газов в цилиндре; силы инерции возвратно-поступательно движущихся масс; центробежные силы; давление на поршень со стороны картера (приблизительно равное атмосферному давлению) и силы тяжести (они в динамическом расчете обычно не учитываются).

Все действующие силы в двигателе воспринимаются: полезным сопротивлениям на коленчатом валу; силами трения и опорами двигателя.

В течение каждого рабочего цикла (720 для четырехтактного двигателя) силы, действующие в кривошипно-шатунном механизме, непрерывно изменяются по величине и направлению. Поэтому для определения характера изменения этих сил по углу поворота коленчатого вала их величины определяют для ряда отдельных положений вала обычно через каждые 10…30 0 .

Результаты динамического расчета сводят в таблицы.

2.2.2 Силы давления газов

Силы давления газов, действующие на площадь поршня, для упрощения динамического расчета заменяют одной силой, направленной по оси цилиндра и приближенной к оси поршневого пальца. Определяется эта сила для каждого момента времени (угла ц) по действительной индикаторной диаграмме, построенной на основании теплового расчета (обычно для нормальной мощности и соответствующего ей числа оборотов).

Перепостроение индикаторной диаграммы в развернутую диаграмму по углу поворота коленчатого вала обычно осуществляется по методу проф. Ф.А. Брикса. Для этого под индикаторной диаграммой строиться вспомогательная полуокружность радиусом R = S/2 (см. рисунок на листе 1 формата А1 под названием «Индикаторная диаграмма в P-S координатах»). Далее от центра полуокружности (точка О) в сторону Н.М.Т. откладывается поправка Брикса равная Rл/2. Полуокружность делят лучами из центра О на несколько частей, а из центра Брикса (точка О) проводят линии параллельные этим лучам. Точки полученные на полуокружности, соответствуют определенным лучам ц (на рисунке формата А1 интервал между точками равен 30 0). Из этих точек проводятся вертикальные линии до пересечения с линиями индикаторной диаграммы, и полученные величины давлений сносятся на вертикали

соответствующих углов ц. Развертку индикаторной диаграммы обычно начинают от В.М.Т. в процессе хода впуска:

а) индикаторную диаграмму (см. рисунок на листе 1 формата А1), полученную в тепловом расчёте, развёртывают по углу поворота кривошипа по методу Брикса;

Ппоправка Брикса

где Ms - масштаб хода поршня на индикаторной диаграмме;

б) масштабы развёрнутой диаграммы: давлений Мр = 0,033 МПа/мм; угла поворота кривошипа Мф = 2 гр п к. в. / мм;

в) по развёрнутой диаграмме через каждые 10 0 угла поворота кривошипа определяются значения Др г и наносятся в таблицу динамического расчёта (в таблице значения даны через 30 0):

г) по развернутой диаграмме через каждые 10 0 следует учесть, чтодавление на свернутой индикаторной диаграмме отсчитывается от абсолютногонуля, а на развёрнутой диаграмме показывается избыточное давление надпоршнем

МН/м 2 (2.7)

Следовательно, давления в цилиндре двигателя, меньшие атмосферных, на развёрнутой диаграмме будут отрицательными. Силы давления газов, направленные к оси коленчатого вала - считаются положительными, а от коленчатого вала - отрицательными.

2.2.2.1 Сила давления газов на поршень Рг, Н

Р г = (р г - р 0)F П ·*10 6 Н, (2.8)

где F П выражена в см 2 , а р г и р 0 - в МН /м 2 , .

Из уравнения (139, ) следует, что кривая сил давления газов Р г по углу поворота коленчатого вала будет иметь тот же характер изменения, что и кривая давления газов Др г.

2.2.3 Приведение масс частей кривошипно-шатунного механизма

По характеру движения массы деталей кривошипно-шатунного механизма можно разделить на массы, движущихся возвратно-поступательно (поршневая группа и верхняя головка шатуна), массы, совершающие вращательное движение (коленчатый вал и нижняя головка шатуна): массы, совершающие сложное плоско-параллельное движение (стержень шатуна).

Для упрощения динамического расчета действительный кривошипно-шатунный механизм заменяется динамически эквивалентной системой сосредоточенных масс.

Масса поршневой группы не считается сосредоточенной на оси

поршневого пальца в точке А [ 2, рисунок 31, б].

Масса шатунной группы m Ш заменяется двумя массами, одна из которых m ШП сосредоточивается на оси поршневого пальца в точке А - а другая m ШК -- на оси кривошипа в точке Б Величины этих масс определяются из выражений:

где L ШК - длина шатуна;

L, MK - расстояние от центра кривошипной головки до центра тяжести шатуна;

L ШП - расстояние от центра поршневой головки до центра тяжести шатуна

С учётом диаметра цилиндра- отношения S/D двигателя с рядным расположением цилиндров и достаточно высокого значения р г устанавливается масса поршневой группы (поршень из алюминиевого сплава) т П = m j

2.2.4 Силы инерции

Силы инерции, действующие в кривошипно-шатунном механизме, в соответствии с характером движения приведённых масс Р г, и центробежные силы инерции вращающихся масс К R (рисунок 32, а; ).

Сила инерции от возвратно-поступательно движущихся масс

2.2.4.1 Из полученных на ЭВМ расчетах определяют значение силы инерции возвратно-поступательно движущихся масс:

Аналогично ускорению поршня сила Р j: может быть представлена в виде суммы сил инерции первого Р j1 и второго Р j2 порядков

В уравнениях (143) и (144), знак минус показывает, что сила инерции направлена в сторону, противоположную ускорению. Силы инерции возвратно-поступательно движущихся масс действуют по оси цилиндра и так же как силы давления газов, считаются положительными, если они направлены к оси коленчатого вала, и отрицательными, если они направлены от коленчатого вала.

Построение кривой силы инерции возвратно-поступательно движущихся масс осуществляется по методам, аналогичным построению кривой ускорения

поршня (см. рисунок 29, ), но в масштабе М р и М н в мм, в котором построена диаграмма сил давления газов .

Расчёты Р J должны производиться для тех же положений кривошипа (углов ц), для которых определялись Др г и Дрг

2.2.4.2 Центробежная сила инерции вращающихся масс

Сила К R постоянна по величине (при щ = const), действует по радиусу кривошипа и постоянно направлена от оси коленчатого вала.

2.2.4.3 Центробежная сила инерции вращающихся масс шатуна

2.2.4.4 Центробежная сила, действующая в кривошипно-шатунном механизме

2.2.5 Суммарные силы, действующие в кривошипно-шатунном механизме:

а) суммарные силы, действующие в кривошипно-шатунном механизме, определяются путём алгебраического сложения сил давления газов и сил инерции возвратно-поступательно движущихся масс. Суммарная сила, сосредоточенная на оси поршневого пальца

P=P Г +P J ,Н (2.17)

Графически кривая суммарных сил строится с помощью диаграмм

Рг=f(ц) и Р J = f(ц) (см. рисунок 30, ) При суммировании этих двух диаграмм,построенных в одном масштабе М Р, полученная диаграмма Р будет в том жемасштабе Мр.

Суммарная сила Р, как и силы Р г и Р J направлена по оси цилиндрамприложена к оси поршневого пальца.

Воздействие от силы Р передаётся на стенки цилиндра перпендикулярно его оси, и на шатун по направлению его оси.

Сила N, действующая перпендикулярно оси цилиндра, называется нормальной силой и воспринимается стенками цилиндра N, Н

б) нормальная сила N считается положительной, если создаваемый ею момент относительно оси коленчатого вала шеек имеет направление, противоположное направлению вращения вата двигателя.

Значения нормальной силы Ntgв определяют для л = 0.26 по таблице

в) сила S, действующая вдоль шатуна, воздействует на него и далее передается* кривошипу. Она считается положительной, если сжимает шатун, и отрицательной, если его растягивает.

Сила, действующая вдоль шатуна S, Н

S = P(1/cos в),H (2.19)

От действия силы S на шатунную шейку возникают две составляющие силы:

г) сила направленная по радиусу кривошипа К, Н

д) тангенциальная сила, направленная по касательной к окружности радиуса кривошипа, Т, Н

Сила Т считается положительной, если она сжимает щеки колена.

2.2.6 Среднее значение тангенциальной силы за цикл

где Р Т - среднее индикаторное давление, МПа;

F п - площадь поршня, м;

ф - тактность двигателя-прототипа

2.2.7 Крутящие моменты:

а) по величине д) определяется крутящий момент одного цилиндра

М кр.ц =Т*R, м (2.22)

Кривая изменения силы Т в зависимости от ц является также и кривой изменения М кр.ц, но в масштабе

М м = М р *R, Н*м в мм

Для построения кривой суммарного крутящего момента М кр многоцилиндрового двигателя производят графическое суммирование кривых крутящих моментов каждого цилиндра, сдвигая одну кривую относительно другой на угол поворота кривошипа между вспышками. Так как от всех цилиндров двигателя величины и характер изменения крутящих моментов по углу поворота коленчатого вала одинаковы, отличаются лишь угловыми интервалами, равными угловым интервалам между вспышками в отдельных цилиндрах, то для подсчёта суммарного крутящего момента двигателя достаточно иметь кривую крутящего момента одного цилиндра

б) для двигателя с равными интервалами между вспышками суммарный крутящий момент будет периодически изменяться (i -- число цилиндров двигателя):

Для четырехтактного двигателя через О -720 / L град. При графическом построении кривой М кр (см. лист ватмана 1 формата А1) кривая М кр.ц одного цилиндра разбивается на число участков, равное 720 - 0 (для четырёхтактных двигателей), все участки кривой сводятся в один и суммируются.

Результирующая кривая показывает изменение суммарного крутящего момента двигателя в зависимости от угла поворот коленчатого вала.

в) среднее значение суммарного крутящего момента М кр.ср определяют по площади заключённой под кривой М кр.

где F 1 и F 2 -- соответственно положительная площадь и отрицательная площадь в мм 2 , заключённые между кривой М кр и линией АО и эквивалентные работе, совершаемой суммарным крутящим моментом (при i ? 6 отрицательная площадь, как правило, отсутствует);

ОА - длина интервала между вспышками на диаграмме, мм;

М м -- масштаб моментов. Н * м в мм.

Момент М кр.ср представляет собой средний индикаторный момент

двигателя. Действительный эффективный крутящий момент, снимаемый с вала двигателя.

где з м - механический к. п. д. двигателя

Основные расчетные данные по силам, действующих в кривошипно-шатунном механизме по углу поворота коленчатого вала приведены в приложении Б.

Лекция 4. КИНЕМАТИКА И ДИНАМИКА ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 1. Кинематика и динамика кривошипно-шатунного механизма 2. Уравновешивание двигателя Кривошипно-шатунный механизм (КШМ) является наиболее распространенной конструктивной реализацией важного функционального элемента теплового двигателя конечного преобразователя. Чувствительный элемент этого преобразователя поршень 2 (см. рис. 1), днище которого воспринимает давление газов. Возвратно-поступательное и прямолинейное движение поршня (под действием давления газов) преобразуется во вращательное движение выходного коленчатого вала с помощью шатуна 4 и кривошипа 5.


К подвижным частям КШМ относят также маховик, установленный на заднем конце коленчатого вала. Механическая энергия вращающегося коленчатого вала характеризуется вращающим моментом Ми частотой вращения п. К неподвижным частям КШМ относится блок цилиндров 3, головка блока 1 и поддон 6. Рис. 1. Схема поршневого двигателя внутреннего сгорания: 1 головка блока; 2 поршень; 3 блок цилиндров; 4 шатун; 5 кривошип коленвала; б поддон (масляный картер)


Условия работы деталей КШМ современных двигателей, связанные с воздействием газовых сил на поршень, характеризуются значительными и быстропеременными скоростями и ускорениями. Шатун и коленчатый вал воспринимают и передают значительные по величине нагрузки. Анализ всех сил, действующих в КШМ двигателя, необходим для расчета элементов двигателя на прочность, определения нагрузок на подшипники, оценки уравновешенности двигателя, расчета опор двигателя. Величина и характер изменения механических нагрузок, приходящихся на эти детали, определяется на основе кинематического и динамического исследования КШМ. Динамическому расчету предшествует тепловой расчет, обеспечивающий возможность выбора основных размеров двигателя (диаметр цилиндра, ход поршня) и нахождения величины и характера изменения сил под воздействием давления газов.


Абв Рис. 2. Основные конструктивные схемы кривошипно-шатунных механизмов автомобильных двигателей: а центральная; б смещенная; в V-образная 1. Кинематика и динамика кривошипно-шатунного механизма В автомобильных поршневых двигателях применяются в основном КШМ трех конструктивных схем (рис. 2): а)центральный, или аксиальный, ось цилиндра пересекается с осью коленчатого вала; б)смещенный, или дезаксиальный, ось цилиндра смещена на некоторое расстояние относительно оси коленчатого вала; в)с прицепным шатуном два или более шатунов размещены на одной кривошипной шейке коленчатого вала.


Наибольшее распространение в автомобильных двигателях получил центральный КШМ. Проанализируем кинематику и динамику его работы. Задачей кинематического анализа КШМ является установление законов движения поршня и шатуна при известном законе движения кривошипа коленвала. При выводе основных закономерностей пренебрегают неравномерностью вращения коленчатого вала, считая, что его угловая скорость со постоянна. За исходное принимают положение поршня, соответствующее ВМТ. Все величины, характеризующие кинематику механизма, выражают в функции угла поворота коленчатого вала. Путь поршня. Из схемы (см. рис. 2, а) следует, что перемещение поршня от ВМТ, соответствующее повороту коленчатого вала на угол φ, равно Sn = ОА1 -ОА = R(l - cos φ) + Lш (I - cosβ) (1) где R радиус кривошипа коленвала, м; L ш длина шатуна, м. Из тригонометрии известно, что cosβ = (l - sin2 φ) 2, а из рис. 2, а следует, что (2)


Обозначив Выражение представляет собой бином Ньютона, который можно разложить в ряд, можно записать Для автомобильных двигателей λ = 0,24...0,31. (3) Пренебрегая членами ряда выше второго порядка, принимаем с достаточной для практики точностью Подставляя полученное значение cosβ в выражение (1) и учитывая, что получим окончательное выражение, описывающее перемещение поршня


(4) Скорость поршня. Формулу для определения скорости поршня v n получают, дифференцируя выражение (4) по времени, (5) где угловая скорость коленчатого вала. Для сравнительной оценки конструкции двигателей вводят понятие средней скорости поршня (м/с): где п частота вращения коленвала, об./мин. Для современных автомобильных двигателей величина vп.ср колеблется в пределах м/с. Чем выше средняя скорость поршня, тем быстрее изнашиваются направляющие поверхности цилиндра и поршня.


Ускорение поршня. Выражение для ускорения поршня j п получают, дифференцируя выражение (5) по времени (6) На рис. 2 показаны кривые изменения пути, скорости и ускорения поршня в зависимости от угла поворота коленчатого вала φ, построенные по формулам (4)...(6) для одного полного поворота коленчатого вала. Анализ кривых позволяет отметить следующее: при повороте кривошипа из исходного положения на первую четверть оборота (от φ = 0 до φ = 90°) поршень проходит на Rλ больший путь, чем при повороте на вторую четверть оборота, что вызывает большую среднюю скорость поршня в первой четверти и большие износы верхней части цилиндра; скорость поршня не постоянна: она равна нулю в мертвых точках и имеет максимальное значение при φ, близком к 75° и 275°; ускорение поршня достигает наибольших абсолютных значений в ВМТ и НМТ, т.е. в те моменты, когда изменяется направление движения поршня: при этом ускорение в ВМТ больше, чем в НМТ; при v nmax = 0 (ускорение меняет свой знак).




Задачей динамического анализа КШМ является получение расчетных формул для определения величины и характера изменения сил, действующих на поршень, шатун и кривошип коленвала, и моментов сил, возникающих в КШМ при работе двигателя. Знание сил, действующих на детали КШМ, необходимо для расчета элементов двигателя на прочность и определение нагрузок на подшипники. При работе двигателя на детали КШМ действуют силы от давления газов в цилиндре и силы инерции движущихся масс механизма, а также силы трения и силы полезного сопротивления на валу двигателя. Сила давления газов Р г, действующая на поршень по оси цилиндра, вычисляется по формуле (7) где Рi индикаторное давление газов (давление над поршнем) при заданном угле поворота кривошипа, МПа; р 0 давление в картере двигателя (под поршнем), МПа; А п площадь днища поршня, м 2.


Кривые зависимости силы давления РГ от угла поворота кривошипа φ показаны на рис. 3. При построении графика считают, что сила положительная, если она направлена к коленчатому валу, и отрицательная, если направлена от вала. Рис. 3. Изменение сил давления газов, инерции и суммарной силы в зависимости от угла поворота коленчатого вала


Силы инерции в зависимости от характера движения подвижных частей КШМ делят на силы инерции возвратно-поступательно движущихся масс Р j и силы инерции вращающихся масс Р а. Массу т ш шатуна, участвующего одновременно в возвратно-поступательном и вращательном движениях, заменяют двумя массами т 1, и т 2, сосредоточенными в центах А и В соответственно поршневой и кривошипной головок (рис. 4, б). При приближенных расчетах принимают т х = 0,275 т ш и т 2 = 0,725 т ш. Сила инерции возвратно-поступательно движущихся масс (поршня с кольцами и пальцем т п, а также массы т ш, шатуна) действует по оси цилиндра и равна (8) Характер изменения этой силы аналогичен характеру изменения ускорения поршня j n. Знак «минус» показывает, что направления силы и ускорения различны. График зависимости Р j от угла поворота кривошипа ср приведен на рис. 3. Сила инерции вращающихся масс, являющаяся центробежной силой, направлена по радиусу кривошипа от его оси вращения и равна (9)


Где т к неуравновешенная масса кривошипа, которую считают сосредоточенной на оси кривошипа в точке В (рис. 4, б); m ш.ш.- масса шатунной шейки с прилегающими и расположенными концентрично ей частями щек; т щ масса средней части щеки, заключенной в контуре a-b-c-d-a, центр тяжести которой расположен на расстоянии р от оси вращения вала (рис. 4, а). Рис. 4. Система сосредоточенных масс, динамически эквивалентная кривошипно-шатунному механизму: а схема приведения масс кривошипа; б приведенная схема кривошипно-шатунного механизма


Суммарная сила. Сила давления газов Р г и сила инерции возвратно- поступательно движущихся масс P j действуют совместно вдоль оси цилиндра. Для исследования динамики КШМ имеет значение сумма этих сил (Р = Р т + P j). Силу Р для различных углов поворота кривошипа получают алгебраическим сложением ординат точек кривых Р т и P j (см. рис. 3). Чтобы исследовать действие суммарной силы Р на детали КШМ, разложим ее на две составляющие силы: Р ш, направленную по оси шатуна, и N, действующую перпендикулярно оси цилиндра (рис. 5, а): Перенесем силу Р ш вдоль линии ее действия в центр шатунной шейки кривошипа (точка В) и заменим двумя составляющими силами тангенциальной (7) и радиальной (К): (10) (11)




К центру О кривошипа приложим две взаимно противоположные силы Т" и Т", равные и параллельные силе Т. Силы Т и Т" составляют пару с плечом, равным радиусу R кривошипа. Момент этой пары сил, вращающий кривошип, называется вращающим моментом двигателя М Д = TR. Радиальную силу перенесем в центр О и найдем результирующую Р ш сил К и Т" (рис. 5, б). Сила Р ш равна и параллельна силе Р ш. Разложение силы Р ш в направлениях по оси цилиндра и перпендикулярно ей дает две составляющие силы Р" и N". Сила Р" по величине равна силе Р, слагающейся из сил Р т и Р,. Первая из двух слагаемых сил уравновешивается силой давления газов на головку цилиндров, вторая передается на опоры двигателя. Эту неуравновешенную силу инерции возвратно-поступательно движущихся частей P j обычно представляют в виде суммы двух сил (12) которые получили название сил инерции первого (PjI) и второго (PjII) порядка. Эти силы действуют по оси цилиндра.


Силы N" и N (рис. 5, в) составляют пару сил с моментом М опр =-NH, стремящимися опрокинуть двигатель. Опрокидывающий момент, его также называют реактивным моментом двигателя, всегда равен вращающему моменту двигателя, но имеет противоположное направление. Этот момент через внешние опоры двигателя передается раме автомобиля. Используя формулу (10), а также зависимость М Д =TR, можно построить график индикаторного вращающего момента М д одноцилиндрового двигателя в зависимости от угла φ (рис. 6, а). На этом графике площади, расположенные над осью абсцисс, представляют собой положительную, а расположенные под осью абсцисс отрицательную работу вращающего момента. Разделив алгебраическую сумму этих площадей А на длину графика l, получим среднее значение момента где М м масштаб момента


Для оценки степени равномерности индикаторного вращающего момента двигателя введем коэффициент неравномерности вращающего момента где M max ; M min ; M ср соответственно максимальный, минимальный и средний индикаторные моменты. С увеличением числа цилиндров двигателя уменьшается коэффициент μ, т.е. увеличивается равномерность вращающего момента (рис. 6). Неравномерность вращающего момента вызывает изменения угловой скорости со коленчатого вала, что оценивается коэффициентом неравномерности хода: где:ω max ; ω min ; ω ср соответственно наибольшая, наименьшая и средняя угловые скорости коленчатого вала за цикл,




Заданную неравномерность хода δ обеспечивают применением маховика с моментом инерции J, используя соотношения: где А изб площадь, лежащая над линией М ср (рис. 6, б) и пропорциональная избыточной работе Wизб вращающего момента; - масштаб угла поворота коленчатого вала, 1 рад/мм i aб -(i число цилиндров, отрезок аб в мм); n частота вращения, об./мин. Избыточную работу определяют графически, величины δ и J задаются при проектировании. Для автомобильных двигателей δ = 0,01...0,02.


2. Уравновешивание двигателя Двигатель считается уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению или равны нулю. У неуравновешенного двигателя передаваемые на подвеску переменные по величине и направлению силы вызывают колебания подмоторной рамы, кузова. Эти колебания часто являются причиной дополнительных поломок элементов автомобиля. При практическом решении задач уравновешивания двигателей обычно учитывают следующие силы и моменты, действующие на опоры поршневого двигателя: а) силы инерции возвратно-поступательно движущихся масс КШМ первого P jI и второго P jII порядка; б) центробежную силу инерции вращающихся неуравновешенных масс КШМ Р ц; в) продольные моменты М jI и М jII сил инерции P jI и P jII ; г) продольный центробежный момент М ц центробежной силы инерции Р ц.


Условия уравновешенности двигателя описываются следующей системой уравнений: (13) Уравновешивание осуществляется двумя способами, применяемыми отдельно или одновременно: 1. выбором такой кривошипной схемы коленчатого вала, при которой указанные силы и моменты, возникающие в разных цилиндрах, взаимно уравновешиваются; 2. применением противовесов, т.е. дополнительных масс, сила инерции которых равна по величине и противоположна по направлению уравновешиваемым силам. Рассмотрим уравновешивание одноцилиндрового двигателя, в котором неуравновешенными являются силы инерции Р jI, P jII, Р ц. Силы инерции первого P jI и второго Р jII порядка можно полностью уравновесить с помощью системы добавочных противовесов.


Сила P jI =m j Rω 2 cos φ уравновешивается при установке двух противовесов массой т пр 1 на двух параллельных оси коленчатого вала и симметрично расположенных относительно оси цилиндра дополнительных валах, вращающихся в противоположные стороны с угловой скоростью коленчатого вала ω. Противовесы устанавливаются так, чтобы в любой момент направление их подвеса составляло с вертикалью угол, равный углу поворота коленчатого вала φ (рис. 7). При вращении каждый противовес создает центробежную силу где p j расстояние от оси вращения противовеса до его центра тяжести. Раскладывая векторы двух сил на горизонтальные Y I и вертикальные Х I составляющие, убеждаемся, что при любом φ силы Y I взаимно уравновешиваются, а силы Х I дают равнодействующую Сила R} может полностью уравновесить силу Р л при соблюдении условия


Откуда Аналогично уравновешивается сила Р и, только противовесы в этом случае вращаются с удвоенной угловой скорость 2ω (рис. 7). Центробежную силу инерции Р ц можно полностью уравновесить с помощью противовесов, которые устанавливают на щеках коленчатого вала со стороны, противоположной кривошипу. Масса каждого противовеса т пр выбирается с соблюдением условия откуда где р расстояние от центра тяжести противовеса до оси вращения.




Схема сил инерции, действующих в 4-цилиндровом однорядном двигателе, показана на рис. 8. Из нее видно, что при данной форме коленчатого вала силы инерции первого порядка уравновешиваются Σ РjI = 0. В продольной плоскости двигателя силы образуют две пары, момент P jI которых M jI = P jI а. Так как направления этих моментов противоположны, то и они тоже уравновешиваются (Σ M jI = 0). Рис. 8. Схема сил инерции, действующих в 4- цилиндровом однорядном двигателе


Уравновешены также центробежные силы и их моменты и моменты сил инерции второго порядка, что означает В 4-цилиндровом двигателе остаются неуравновешенными силы Р jII. Уравновесить их можно с помощью вращающихся противовесов, как сказано выше, но это приведет к усложнению конструкции двигателя. В 6-цилиндровом рядном четырехтактном двигателе кривошипы коленвала расположены равномерно, через 120°. В этом двигателе полностью уравновешены как силы инерции, так и их моменты. Однорядный 8-цилиндровый четырехтактный двигатель можно рассматривать как два однорядных четырехцилиндровых двигателя, у которых коленчатые валы повернуты один относительно другого на 90°. В такой схеме двигателя также уравновешены все силы инерции и их моменты. Схема V-образного 6-цилиндрового четырехтактного двигателя с углом между рядами 90° (угол развала цилиндров) и тремя спаренными кривошипами под углом 120° показана на рис. 9.


В каждой 2-цилиндровой секции результирующая сил инерции первого порядка и результирующая сил инерции вращающихся масс левого и правого цилиндра постоянны по величине и направлены вдоль радиуса кривошипа. Результирующая сил инерции второго порядка в секции переменна по величине и действует в горизонтальной плоскости. На рис. 9 силы P jI, P jII, P ц - равнодействующие силы инерции для каждой секции спаренных цилиндров, штрихи в обозначении сил на рисунке указывают номер секции цилиндра. Для всего двигателя (для трех пар цилиндров) сумма сил инерции равна нулю, т.е Суммарные моменты сил инерции первого порядка и центробежных сил, равные соответственно и действуют в одной вращающейся плоскости, проходящей через ось коленчатого вала и составляющей с плоскостью первого кривошипа угол 30°. Для уравновешивания этих моментов устанавливают противовесы на двух крайних щеках коленчатого вала (см. рис. 9). Масса противовеса т пр определяется из условия


Где b расстояние между центрами тяжести противовесов. Суммарный момент сил инерции второго порядка действует в горизонтальной плоскости. Обычно ΣM jII не уравновешивают, так как это связано со значительным усложнением конструкции. Для приближения действительной уравновешенности к теоретической в производстве двигателей предусматривается ряд конструкторских и технологических мер: - коленчатый вал делают как можно более жестким; - возвратно-поступательно движущиеся детали при сборке подбирают комплектно с наименьшей разницей масс комплектов в разных цилиндрах одного двигателя; - допустимые отклонения на размеры деталей КШМ устанавливают как можно меньшие; - вращательно движущиеся детали тщательно балансируют, а коленчатые валы и маховики подвергают динамической балансировке.




Балансировка заключается в выявлении неуравновешенности вала относительно оси вращении и в самом уравновешивании с помощью удаления металла или с помощью прикрепления балансировочных грузов. Балансировка вращающихся деталей подразделяется на статическую и динамическую. Тело считается уравновешенным статически, если центр масс тела лежит на оси вращения. Статической балансировке подвергают вращающиеся детали дисковой формы, диаметр которых больше толщины. Деталь насаживают на цилиндрический вал, который укладывают на две параллельные горизонтальные призмы. Деталь самоустанавливается, повернувшись тяжелой частью вниз. Эта неуравновешенность устраняется прикреплением противовеса в точке, диаметрально противоположной нижней (тяжелой) части детали. На практике для статической балансировки используют приборы, позволяющие сразу определить массу балансирного груза и место его установки. Динамическая балансировка обеспечивается при соблюдении условия статической балансировки и выполнении второго условия сумма моментов центробежных сил вращающихся масс относительно любой точки оси вала должна равняться нулю. При выполнении этих двух условий ось вращения совпадает с одной из главных осей инерции тела.


Динамическая балансировка осуществляется при вращении вала на специальных балансировочных станках. ГОСТ устанавливает классы точности балансировки для жестких роторов, а также требования к балансировке и методы расчета дисбалансов. Так, например, узел коленчатого вала двигателя для легкового и грузового автомобилей оценивается 6-м классом точности, дисбаланс при этом должен быть в пределах мм · рад/с. Во время работы двигателя на каждый кривошип коленчатого вала действуют непрерывно и периодически изменяющиеся тангенциальные и нормальные силы, вызывающие в упругой системе узла коленвала переменные деформации кручения и изгиба. Относительные угловые колебания сосредоточенных на валу масс, вызывающие закручивание отдельных участков вала, называются крутильными колебаниями. При известных условиях знакопеременные напряжения, вызываемые крутильными и изгибными колебаниями, могут привести к усталостной поломке вала. Расчеты и экспериментальные исследования показывают, что для коленчатых валов изгибные колебания менее опасны, чем крутильные.


Поэтому в первом приближении при расчетах изгибными колебаниями можно пренебречь. Крутильные колебания коленчатого вала опасны не только для деталей КШМ, но и для приводов различных агрегатов двигателя и для агрегатов силовой передачи автомобиля. Обычно расчет на крутильные колебания сводится к определению напряжений в коленчатом валу при резонансе, т.е. при совпадении частоты возбуждающей силы с одной из частот собственных колебаний вала. Если возникает необходимость в уменьшении возникающих напряжений, то на коленчатом валу устанавливают гасители крутильных колебаний (демпферы). В автотракторных двигателях наибольшее распространение имеют гасители внутреннего (резиновые) и жидкостного трения. Они работают на принципе поглощения энергии колебаний с последующим рассеиванием ее в виде тепла. Резиновый гаситель состоит из инерционной массы, при вулканизированной через резиновую прокладку к диску. Диск жестко соединен с коленчатым валом. На резонансных режимах инерционная масса начинает колебаться, деформируя резиновую прокладку. Деформация последней способствует поглощению энергии колебаний и «расстраивает» резонансные колебания коленчатого вала.


В гасителях жидкостного трения свободная инерционная масса помещается внутри герметически закрытого корпуса, жестко связанного с коленвалом. Пространство между стенками корпуса и массой заполнено специальной силиконовой жидкостью большой вязкости. При нагревании вязкость этой жидкости меняется незначительно. Гасители крутильных колебаний следует устанавливать в том месте вала, где имеется наибольшая амплитуда колебаний.

Основным звеном энергетической установки предназначенной для транспортной техники является кривошипно-шатунного механизм. Его основной задачей является превращение прямолинейного движения поршня во вращательное движение коленчатого вала. Условия работы элементов кривошипно-шатунного механизма характеризуются широким диапазоном и высокой частотой повторения знакопеременных нагрузок в зависимости от положения поршня, характера происходящих процессов внутри цилиндра и частоты вращения коленчатого вала двигателя.

Расчет кинематики и определение динамических сил, возникающих в кривошипно-шатунном механизме, выполняем для заданного номинального режима, с учетом полученных результатов теплового расчета и ранее принятых конструктивных параметров прототипа. Результаты кинематического и динамического расчета будут использоваться для расчета на прочность и определения конкретных конструктивных параметров или размеров основных узлов и деталей двигателя.

Основной задачей кинематического расчета является определение перемещения, скорости и ускорения элементов кривошипно-шатунного механизма.

Задачей динамического расчета является определение и анализ сил, действующих в кривошипно-шатунном механизме.

Угловую скорость вращения коленчатого вала принимаем постоянной, в соответствии с заданной частотой вращения.

В расчете рассматриваются нагрузки от сил давления газов и от сил инерции движущихся масс.

Текущие значения силы давления газов определяем на основе результатов расчета давлений в характерных точках рабочего цикла после построения и развертки индикаторной диаграммы в координатах по углу поворота коленчатого вала.

Силы инерции движущихся масс кривошипно-шатунного механизма делят на силы инерции возвратно-поступательно движущихся масс Pj и силы инерции вращающихся масс KR.

Силы инерции движущихся масс кривошипно-шатунного механизма определяем с учетом размеров цилиндра, конструктивных особенностей КШМ и масс его деталей.

Для упрощения динамического расчета действительный кривошипно-шатунный механизм заменяем эквивалентной системой сосредоточенных масс.

Все детали КШМ по характеру их движения делятся на три группы:

  • 1) Детали, совершающие возвратно-поступательное движения. К ним относим массу поршня, массу поршневых колец, массу поршневого пальца и считаем сосредоточенной на оси поршневого пальца - mn.;
  • 2) Детали, совершающие вращательное движение. Массу таких деталей заменяем общей массой, приведенной к радиусу кривошипа Rкp, и обозначаем mк. В нее входит масса шатунной шейки mшш и приведенная масса щек кривошипа mщ, сосредоточенная на оси шатунной шейки;
  • 3) Детали, совершающие сложное плоскопараллельное движение (шатунная группа). Для упрощения расчетов ее заменяем системой 2-х статически замещающих разнесенных масс: массы шатунной группы, сосредоточенной на оси поршневого пальца - mшп и массы шатунной группы, отнесенной и сосредоточенной на оси шатунной шейки коленчатого вала - mшк.

При этом:

mшn+ mшк= mш,

Для большинства существующих конструкций автомобильных двигателей принимают:

mшn = (0,2…0,3)· mш;

mшк = (0,8…0,7)· mш.

Таким образом, систему масс КШМ замещаем системой 2-х сконцентрированных масс:

Масса в точке А - совершающая возвратно-поступательное движение

и масса в точке В, совершающая вращательное движение

Значения mn, mш и mк определяются, исходя из существующих конструкций и конструктивных удельных масс поршня, шатуна и колена кривошипа, отнесенных к единице поверхности диаметра цилиндра.

Таблица 4 Удельные конструктивные массы элементов КШМ

Площадь поршня равна

Для начала выполнения кинематического и динамического расчёта необходимо принять значения конструктивных удельных масс элементов кривошипно - шатунного механизма из таблицы

Принимаем:

С учётом принятых значений определяем реальные значения массы отдельных элементов кривошипно - шатунного механизма

Масса поршня кг,

Масса шатуна кг,

Масса колена кривошипа кг

Общая масса элементов КШМ совершающих возвратно - поступательное движение будет равна

Общая масса элементов совершающих вращательное движение с учётом приведения и распределения массы шатуна равна

Таблица 5 Исходные данные к расчету КШМ

Наименование Параметров

Обозначения

Единицы измерения

Численные значения

1. Частота вращения коленвала

2. Число цилиндров

3. Радиус кривошипа

4. Диаметр цилиндра

5. Отношение Rкр/Lш

6. Давление в конце впуска

7. Давление окружающей среды

8. Давление выпуска отработавших газов

9. Максимальное давление цикла

10. Давление в конце расширения

11. Начальный угол расчета

12. Конечный угол расчета

13. Шаг расчета

14. Конструктивная масса поршневой группы

15. Конструктивная масса шатунной группы

16. Конструктивная масса кривошипа

17. Масса поршня

18. Масса шатуна

19. Масса колена кривошипа

20. Общая масса возвратно - поступательно движущихся элементов

21. Общая масса вращающихся элементов КШМ

При работе двигателя в КШМ действуют следующие основные силовые факторы: силы давления газов, силы инерции движущихся масс механизма, силы трения и момент полезного сопротивления. При динамическом анализе КШМ силами трения обычно пренеб­регают.

8.2.1. Силы давления газов

Сила давления газов возникает в результате осуществления в ци­линдре двигателя рабочего цикла. Эта сила действует на поршень, и ее значение определяется как произведение перепада давления на поршне на его площадь: P г = (p г –p о )F п . Здесь р г – давление в ци­линдре двигателя над поршнем; р о – давление в картере; F п – площадь дна поршня.

Для оценки динамической нагруженности элементов КШМ важ­ное значение имеет зависимость силы Р г от времени. Ее обычно получают перестроением индикаторной диаграммы из координат р V вкоординаты р -φ посредством определения V φ =x φ F п с использованием зависимости (84) или графических методов.

Сила давления газов, действующая на поршень, нагружает под­вижные элементы КШМ, передается на коренные опоры картера и уравновешивается внутри двигателя за счет упругой деформации элементов, формирующих внутрицилиндровое пространство, силами Р г и Р / г, действующими на головку цилиндра и на поршень. Эти силы не передаются на опоры двигателя и не вызывают его неуравновешенности.

8.2.2. Силы инерции движущихся масс КШМ

Реальный КШМ представляет собой систему с распределенными параметрами, элементы которой движутся неравномерно, что вы­зывает появление инерционных сил.

В инженерной практике для анализа динамики КШМ широко используют динамически эквивалентные ему систе­мы с сосредоточенными параметрами, синтезируемые на основе метода замещающих масс. Критерием эквивалентности является равенство в любой фазе рабочего цикла совокупных кинетических энергий эквивалентной модели и замещаемого ею механизма. Ме­тодика синтеза модели, эквивалентной КШМ, базируется на замене его элементов системой масс, связанных между собой невесомыми абсолютно жесткими связями.

Детали поршневой группы совершают прямолинейное возвратно-поступательное движение вдоль оси цилиндра и при анализе ее инерционных свойств могут быть замещены равной им массой m п, сосредоточенной в центре масс, положение которого практически совпадает с осью поршневого пальца. Кинематика этой точки описывается законами движения поршня, вследствие чего сила инерции поршня P j п = –m п j, где j – ускорение центра масс, равное ускоре­нию поршня.



Рисунок 14 – Схема кривошипного механизма V-образного двигателя с прицепным шатуном

Рисунок 15 – Траектории точек подвеса главного и прицепного шатунов


Кривошип коленчатого вала совершает равномерное вращательное движение. Конструктивно он состоит из совокупности двух половин коренных шеек, двух щек и шатунной шейки. Инерционные свойства кривошипа описываются суммой центробежных сил элементов, центры масс которых не лежат на оси его вращения (щеки и шатунная шейка): К к =К r ш.ш +2К r щ =т ш . ш rω 2 +2т щ ρ щ ω 2 , где К r ш. ш К r щ и r, ρ щ - центробежные силы и расстояния от оси вращения до центров масс соответственно шатунной шейки и щеки, m ш.ш и m щ - массы соответственно шатунной шейки и щеки.

Элементы шатунной группы совершают сложное плоскопарал­лельное движение, которое может быть представлено как совокупность поступательного движения с кинематическими параметрами центра масс и вращательного движения вокруг оси, проходящей через центр масс перпендикулярно плоскости качания шатуна. В связи с этим ее инерционные свойства описываются двумя пара­метрами - инерционными силой и моментом.

Эквивалентная система, замещающая КШМ, представляет собой систему двух жестко связанных между собой масс:

Массу, сосредоточенную на оси пальца и совершающую возвратно-поступательное движение вдоль оси цилиндра с кинематическими параметрами поршня, m j =m п +m ш. п ;

Массу, расположенную на оси шатунной шейки и совершающую вращательное движение вокруг оси коленчатого вала, т r =т к ш . к (для V-образных ДВС с двумя шатунами, распо­ложенными на одной шатунной шейке коленчатого вала, т r = m к +m ш.к.

В соответствии с принятой моделью КШМ масса m j вызывает силу инерции P j = -m j j, а масса т r создает центробежную силу инерции К r = - а ш.ш т r =т r rω 2 .

Сила инерции P j уравновешивается реакциями опор, на которые установлен двигатель, Будучи переменной по величине и направле­нию, она, если не предусмотреть специальных мероприятий по ее уравновешиванию, может быть причиной внешней неуравновешен­ности двигателя, как это показано на рисунке 16, а.

При анализе динамики ДВС и особенно его уравновешенности с учетом полученной ранее зависимости ускорения j от угла поворо­та кривошипа φ силу инерции Р j удобно представлять в виде суммы двух гармонических функций, которые отличаются амплитудой и скоростью изменения аргумента и называются силами инерции первого (P j I) и второго (P j II) порядка:

P j = – m j rω 2 (cos φ+λ cos2φ ) = С cos φ + λC cos 2φ=P f I +P j II ,

где С = –m j rω 2 .

Центробежная сила инерции K r =m r rω 2 вращающихся масс КШМ представляет собой постоянный по величине вектор, направ­ленный от центра вращения по радиусу кривошипа. Сила К r переда­ется на опоры двигателя, вызывая переменные по величине реакции (рисунок 16, б ). Таким образом, сила К r как и сила Р j , может являться причиной неуравновешенности ДВС.

а – сила P j ;сила К r ; К х =K r cos φ = K r cos (ωt) ; К у = K r sin φ = K r sin (ωt)

Рис. 16 - Воздействие сил инерции на опоры двигателя.