» »

Импульсные двигатели для самолетов. Матвеев Николай Иванович

24.10.2019

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.


Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.


Первый запуск опытного изделия "Ифрит"

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 24.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Схема ПуВРД представлена на рис.3.16.

Рис.3.16.Схема пульсирующего воздушно-реактивного двигателя:

    диффузор,2- клапанное устройство; 3- форсунки; 4 – камера сгорания;5 – сопло; 6- выхлопная труба.

Топливо впрыскивается через форсунки 3, образуя топливную смесь с воздухом, сжатым в диффузоре 1.

Воспламенение топливной смеси производится в камере сгорания 4, от электрической свечи. Горение топливной смеси, впрыскиваемой в определенных количествах, длится сотые доли секунды. Как только давления в камере сгорания становится больше давления воздуха перед клапанным устройством, происходит закрытие пластинчатых клапанов. При достаточно большом объеме сопла 5 и выхлопной трубы 6, установленной специально для увеличения объема, создается подпор газов, находящихся в камере сгорания. За время сгорания топлива изменение количества газов в объеме за камерой сгорания пренебрежимо мало, поэтому считают, что горение идет при постоянном объеме.

После сгорания порции топлива давление в камере сгорания понижается так, что клапаны 2 открываются и впускают новую порцию воздуха из диффузора.

На рис.3.17. представлен идеальный термодинамический цикл пульсирующего ВРД.

П
роцессы цикла:

1-2 – сжатие воздуха в диффузоре;

2-3 – изохорный подвод теплоты в камере сгорания;

3-4 – адиабатное расширение газов в сопле;

4-1 – изобарное охлаждение продуктов сгорания в атмосфере при с отводом теплоты .

Рис.3.17. Цикл ПуВРД.

Как следует из рис.3.17 , цикл ПуВРД не отличается от цикла ГТУ с изохорным подводом теплоты. Тогда по аналогии с (3.8.) можно сразу записать формулу для термического КПД ПуВРД

(3.20.)

Степень добавочного повышения давления в камере сгорания;

– степень повышения давления в диффузоре.

Таким образом, у пульсирующего ВРД термический КПД больше, чем у ПВРД за счет большей среднеинтегральной температуры теплоподвода.

Усложнение конструкции ПуВРД повлекло за собой увеличение его массы по сравнению с ПВРД.

3.5.3. Компрессорные турбореактивные двигатели (трд)

Эти двигатели получили наибольшее распространение в авиации. В ТРД происходит двухступенчатое сжатие воздуха (в диффузоре и в компрессоре) и двухступенчатое расширение продуктов сгорания топливной смеси (в газовой турбине и в сопле).

Принципиальная схема ТРД представлена на рис 3.18.

Рис.3.18. Принципиальная схема ТРД и характер изменения параметров рабочего тела в газо-воздушном тракте:

1-диффузор;2-осевой компрессор;3- камера сгорания; 4- газовая турбина; 5- сопло.

Давления набегающего потока воздуха сначала повышается в диффузоре 1, а затем в компрессоре 2. Привод компрессора осуществляется от газовой турбины 4. Топливо подается в камеру сгорания 3, где вместе с воздухом образует топливную смесь и сгорает при постоянном давлении. Продукты сгорания сначала расширяются на лопатках газовой турбины 4, а затем в сопле. Истечение газов из сопла с большей скоростью создает силу тяги, движущую самолет.

Идеальный термодинамический цикл ТРД аналогичен циклу ПВРД, но дополняется процессами в компрессоре и турбине (рис.3.19).

Рис.3.19. Идеальный цикл ТРД в P - V диаграмме

Процессы цикла:

1-2 – адиабатное сжатие воздуха в диффузоре;

2-3 - адиабатное сжатие воздуха в компрессоре;

3-4 – изобарный подвод теплоты от сгорания топливной смеси в камере сгорания;

4-5 – адиабатное расширение продуктов сгорания на лопатках турбины;

5-6 – адиабатное расширение продуктов сгорания в сопле;

6-1 – охлаждение продуктов сгорания в атмосфере при постоянном давлении с отдачей теплоты .

Термический КПД определяется по формуле (3.19):

(3.21.)

– результирующая степень повышения давления воздуха в диффузоре и компрессоре.

Благодаря более высокой, чем у ПВРД степени сжатия ТРД имеет более высокий термический КПД. Без каких-либо стартовых ускорителей ТРД развивает необходимую силу тяги уже на старте.

Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах. Пульсирующий детонационный двигатель содержит корпус, средства для подачи горючего и окислителя в реактор, кольцевое сопло и газодинамический резонатор, причем резонатор в виде трубы меньшего диаметра размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора, вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором. Изобретение позволяет повысить эффективность преобразования химической энергии топлива в механическую и электрическую энергию двигателя, обеспечить упрощение конструкции, улучшение массогабаритных и эксплуатационных параметров, повышение удельных тяговых характеристик пульсирующего детонационного двигателя. 4 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2435059

Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах.

Создание детонационного двигателя является новым направлением в развитии авиадвигателестроения. По сравнению с существующими авиационными газотурбинными двигателями пульсирующие детонационные двигатели обеспечат существенное улучшение тягово-экономических и массово-габаритных показателей, упрощение конструкции и снижение их стоимости (Вестник воздушного флота, июль-август 2003, стр.72-76). Теоретически и экспериментально доказано, что такие двигатели могут обеспечить повышение термического КПД в 1,3 1,5 раза.

Построение пульсирующих детонационных двигателей осуществляется по следующим схемам (Импульсные детонационные двигатели/ Под ред. С.М.Фролова, М.: ТОРУС ПРЕСС, 2006):

Классическая «Оружейная»;

Схема для прямоточного воздушно-реактивного двигателя;

Схема сжигания смеси с помощью стационарно вращающейся детонационной волны.

Кроме того, активно развивается «инвертированная» схема (ж. Двигатель, 2003, № 1 (25), стр.14-17; ж. Полет, 2006, № 11, стр.7-15, 2007, № 5, стр.22-30, 2008, № 12, стр.18-26).

Пульсирующий детонационный двигатель, построенный по «оружейной» схеме (патент США № 6484492), представляет собой прямолинейную трубу определенной длины, которая открыта с заднего конца и имеет клапанное устройство на переднем конце. При работе двигателя топливно-воздушная смесь подается в трубу через клапан, который затем закрывается.

Детонация топливно-воздушной смеси инициируется с помощью зажигателя, расположенного в трубе, а ударные волны, возникающие в результате детонации, распространяются «вниз» по трубе, повышая температуру и давление образующихся продуктов сгорания. Эти продукты вытесняются из открытого заднего конца, создавая импульс реактивной силы, направленный вперед. После выхода ударной волны возникает волна разрежения, которая обеспечивает подачу в трубу через клапан новой порции топливно-воздушной смеси, и цикл повторяется.

Способ управления детонацией в таком двигателе описан в патенте США № 6751943. Возникающая при воспламенении ударная волна и фронт детонационного горения будут стремиться распространяться в обоих продольных направлениях. Воспламенение инициируется на переднем конце трубы, так что волны будут распространяться по потоку к открытому выходному концу. Клапан необходим для того, чтобы препятствовать выходу ударной волны из передней стороны трубы и, что более важно, чтобы воспрепятствовать прохождению фронта детонационного горения в систему топливно-воздушного впуска. Для цикла пульсирующей детонации требуется, чтобы клапан работал при чрезвычайно высоких температурах и давлениях, и кроме того, он должен работать при очень больших частотах, чтобы получить сглаженную по величине силу тяги. Эти условия значительно уменьшают надежность механических клапанных систем из-за многоцикловой усталости.

Для пульсирующего детонационного двигателя, построенного по «оружейной» схеме, варианты управления «электрическим» клапаном предложены в патенте РФ № 2287713.

Такой двигатель включает трубу, имеющую открытый передний конец и открытый задний конец; топливно-воздушный вход, выполненный в трубе на переднем конце; зажигатель, расположенный в трубе в месте, находящемся между переднем концом и задним концом, а также систему магнитогидродинамического управления потоком, расположенную между зажигателем и топливно-воздушным входом. Предложено три варианта магнитогидродинамического управления потоком.

Первый вариант системы магнитогидродинамического управления потоком включает обмотку возбуждения электрического поля, намотанную вокруг трубы в месте, находящемся между зажигателем и топливно-воздушным входом, и пару постоянных магнитов, расположенных с противоположных сторон трубы для создания в ней магнитного поля, перпендикулярного продольной оси трубы. Детонация топливно-воздушной смеси в трубе будет приводить к протеканию через магнитное поле электрически проводящих ионизированных продуктов горения, в результате возникает электрический ток в обмотке возбуждения, создающий электрическое поле.

Взаимодействие магнитного и электрического полей приводит к возникновению силы Лоренца, направленной против движения ударной и детонационной волн. На время ее действия прямой фронт горения будет рассеиваться и не пройдет через открытый передний конец трубы. Кроме того, обмотка возбуждения электрического поля подключена к системе управления режимом мощности, обеспечивающей подачу в соответствующие моменты времени импульсов тока на зажигатель.

Второй вариант системы магнитогидродинамического управления потоком включает обмотку возбуждения магнитного поля, намотанную вокруг трубы в месте, находящемся между зажигателем и топливно-воздушным входом. К обмотке через устройство управления подключается источник энергии, обеспечивающий протекание через нее электрического тока и тем самым создание магнитного поля. В районе обмотки находящаяся на входе трубы ионизированная топливно-воздушная смесь под действием магнитного поля разделяется на зону, обогащенную топливом, окруженную обедненной воздушной зоной. При детонации прямая волна давления и прямой фронт горения, распространяясь к входу трубы, сталкиваются с разделенными топливной и воздушной зонами. В результате процесс горения передней зоны детонации нарушается, вызывая рассеивание прямого фронта горения. Как только прямой фронт пламени рассеется, подача электропитания на обмотку прекращается.

Третий вариант системы магнитогидродинамического управления потоком объединяет первый и второй варианты, обеспечивающие отбор энергии и разделения топливно-воздушной смеси. Он содержит расположенные друг за другом обмотку возбуждения магнитного поля и обмотку возбуждения электрического поля, намотанные снаружи трубы на участке между зажигателем и топливно-воздушным входом, пару постоянных магнитов, расположенных с противоположных сторон трубы возле обмотки возбуждения электрического поля, для создания в ней магнитного поля, перпендикулярного продольной оси трубы.

Предложенные варианты магнитогидродинамического управления потоком заменяют механический клапан «электрическим», обеспечивая предотвращение выхода фронта детонационного горения в систему топливно-воздушного впуска. Однако при этом детонационный двигатель существенно усложняется, увеличиваются его массогабаритные характеристики.

Известен способ и устройство получения тяги (патент РФ 2215890). Двигатель на основе данного способа состоит из блока подачи горючего и окислителя, корпуса, размещенной в корпусе с образованием кольцевого канала камеры сгорания, зон резонансной активации горючего и окислителя, в которых помещены средства активации в виде искровых разрядников, соединенных с выходами блока управления. К входу блока управления подключен выход блока питания. На выходе камеры сгорания помещен отражатель и оптически связанный с ним центрально расположенный профильный экран, выполненный с вогнутой поверхностью для фокусировки отраженной детонационной волны. Отражатель и экран изготовлены из материала с высокой магнитной проницаемостью, они могут перемещаться относительно друг друга и предназначены для снятия с их поверхности электрической энергии при ударном взаимодействии по ним ионизированного газового потока.

Однако ионизированный газовый поток при столкновении с экраном теряет часть зарядов за счет их притяжения и растекания по поверхности конусообразного отражателя. В результате уменьшается степень ионизации и скорость отраженного газового потока.

Двойное отражение детонационной волны в противоположных направлениях от экрана и отражателя создает тягу, равную разности сил механических воздействий, что приведет в зависимости от их соотношения или к очень малому значению тяги, или к нулевой тяге или даже изменит направление тяги. Поэтому такое устройство не может использоваться как двигатель.

В кольцевой камере сгорания образовавшаяся детонационная волна распространяется в обоих продольных направлениях. Однако конструкция двигателя не имеет устройств, препятствующих прохождению фронта детонационного горения в зоны активации окислителя и горючего, что может вызвать детонацию в этих зонах.

Кроме того, в таком устройстве электрические импульсы формируются на экране и отражателе и снимаются с их поверхностей при ударном воздействии по ним ионизированного газового потока. Для обеспечения высоких значений ионизации потока необходимо использовать дополнительные мероприятия, например введение в топливо легкоионизированных добавок. Такое устройство менее эффективно, чем преобразователь, построенный на преобразовании ударных воздействий в электрические импульсы с помощью сегнетоэлектриков.

Известна камера пульсирующего двигателя детонационного горения построенная по инвертированной схеме (патент № 2084675), содержащая расположенные в корпусе сверхзвуковое сопло и соосно с ним резонатор Гартмана в виде трубки, замкнутой с одного конца и открытой с другого конца. Они располагаются таким образом, что между внутренней поверхностью корпуса и наружной поверхностью сопла образована полость, являющаяся камерой смешения, выходная часть которой представляет критическое сечение с дальнейшим переходом в сверхзвуковое сопло внешнего расширения с усеченным центральным телом.

Такая камера пульсирующего двигателя не имеет предварительной подготовки топлива к детонационному сгоранию, и поэтому КПД ее низкий.

Пульсирующий детонационный двигатель, построенный по инвертированной схеме (патент СССР № 1672933 от 22.04.1991, патент РФ № 2034996 от 10.05.1995, Химическая физика, 2001, том 20, № 6, с.90-98), состоит из реактора и резонатора, соединенных между собой через кольцевое сопло. Сжатый воздух и топливо подаются в реактор, и в нем осуществляется предварительная подготовка топлива к детонационному сгоранию путем разложения компонентов топливно-воздушной смеси на химически активные составляющие, для чего в реакторе осуществляют пиролиз горючего до получения рабочей смеси.

Подготовленная смесь через кольцевое сопло в виде радиальных сверхзвуковых струй подается в резонатор, в результате на основе известного эффекта Гартмана-Шпренгера возникают ударные волны, которые при движении в сторону днища сжимают и нагревают горючую смесь. Отражаясь от донной поверхности резонатора, имеющего вогнутую форму, ударные волны фокусируются в узкой области, где происходит дальнейшее повышение температуры и давления, на основе известного эффекта Гартмана-Шпренгера, способствующих детонации горючей смеси. Возникающая детонационная волна движется по топливно-воздушной смеси со сверхзвуковой скоростью в обоих продольных направлениях, при этом происходит практически мгновенное (взрывное) сгорание топлива, сопровождающееся значительным повышением температуры и давления продуктов сгорания. Детонационная волна, встречаясь со сверхзвуковым потоком рабочей смеси, образует «газовый затвор», который преграждает путь сверхзвуковому потоку рабочей смеси в резонатор. После отражения от донной стенки детонационная волна превращается в отраженную ударную волну, которая по сгоревшей смеси движется в сторону выхода и увлекает за собой продукты сгорания, выбрасывая их в атмосферу со сверхзвуковой скоростью. Воздействие детонационной волны на внутреннюю донную поверхность резонатора создает тягу. За отраженной ударной волной следует волна разрежения, которая, проходя мимо кольцевого сопла и имея за фронтом давление меньше атмосферного, обеспечивает открытие «газового замка» и всасывание новой порции рабочей смеси. Далее процесс повторяется.

Недостатками такого пульсирующего детонационного двигателя являются:

Снижение к.п.д. двигателя за счет расхода части топлива при пиролизе горючего в реакторе для разложения топливно-воздушной смеси на химически активные составляющие;

Газодинамический клапан Гартмана не полностью исключает проникновение фронта детонационного горения через кольцевое сопло в реактор;

Не осуществляется преобразование кинетической энергии отраженных ударных и детонационных волн от донной поверхности резонатора в электрическую импульсную энергию.

По наибольшему количеству сходных признаков данное техническое решение выбрано в качестве прототипа.

Целью создания предлагаемого пульсирующего детонационного двигателя является упрощение конструкции, улучшение массогабаритных и эксплуатационных параметров, повышение удельных тяговых характеристик.

Предлагаемый пульсирующий детонационный двигатель включает два основных узла: реактор и резонатор.

В реакторе для повышения эффективности горения предварительно подготавливают смесь окислителя и горючего. В резонаторе в результате пересечений струй смеси, выходящих из кольцевого сопла со сверхзвуковой скоростью, автоматически возникает процесс горения и формируются ударные и детонационные волны.

Горение как элементарная химическая реакция может произойти только в объеме, где имеет место столкновение молекул топлива и окислителя.

Подготовка такого объема заключается в формировании контактной поверхности потоков окислителя и горючего. Увеличить площадь контактной поверхности можно генерацией вихревых течений в потоках горючего и окислителя. В возмущенном турбулентном потоке площади контактной поверхности двух сред растут во времени по экспоненциальному закону. Увеличение площади контактной поверхности способствует интенсификации процесса смешения горючего и окислителя.

Главным звеном предварительной подготовки смеси окислителя и горючего является активация молекул смеси путем модернизации их электронно-ядерной структуры. Суммарная энергия связей в активированной молекуле существенно меньше, чем в той же молекуле в свободном основном состоянии. В активированной молекуле межъядерные расстояния увеличены, чтобы затем при свершении химической реакции горения полностью покинуть друг друга и стать частями новых конечных молекул. Активация есть снижение энергетического барьера молекул смеси, вызванная воздействием на ее молекулы электромагнитным излучением или другими видами воздействий.

Таким образом, для обеспечения предварительной подготовки смеси в реакторе с целью повышения эффективности горения в резонаторе необходимо:

Создать вихревое смешение окислителя и горючего;

Осуществить активацию молекул смеси путем воздействия на них электромагнитным излучением или потоком различных элементарных частиц.

Вихревое смешение можно осуществить путем тангенциального введения в объем реактора горючего и продольного введения окислителя, при которых их струи взаимно пересекаются. Активацию молекул смеси можно обеспечить при воздействии на них электромагнитным излучением.

В предлагаемой заявке техническая реализация предварительной подготовки смеси окислителя и горючего осуществляется путем установки в реакторе входных топливных патрубков, тангенциально направленных вдоль внутренней полости реактора, и продольно направленного патрубка окислителя. При подаче в них окислителя и горючего в реакторе происходит вихревая закрутка потока, обеспечивающая интенсивное круговое смешение. Для активации смеси в реакторе используется электромагнитное воздействие на молекулы окислителя и горючего с помощью подачи на электроды импульсов тока. При наличии в районе электродов магнитного поля, кроме того, возникают вторичные вихревые течения потока смеси, порожденные взаимодействием тока электрического разряда с магнитным полем (Клементьев И.Б. и др. «Взаимодействие электрического разряда с газовой средой во внешнем магнитном поле и влияние этого взаимодействия на структуру потока и смешение», Теплофизика высоких температур, 2010, № 1).

Так как время жизни активированных состояний молекул мало, активация осуществляется непосредственно перед подачей смеси в резонатор, поэтому постоянный магнит и электроды размещены на критическом сечении кольцевого сопла. Активация осуществляется в течение длительностей подаваемых на электроды импульсов тока. Требуемая мощность таких импульсов небольшая, так как окислитель и горючее уже смешаны, а активации подвергается небольшой объем смеси, находящейся в пространстве критического сечения сопла. При этом мощность импульсов должна быть невысокой еще и для того, чтобы при активации не возникал процесс воспламенения смеси.

Средством импульсной активации смеси окислителя и горючего являются электроды, размещенные в реакторе на выходах кольцевого сопла Гартмана, которые соединены с электрическим выходом пьезогенератора.

Резонатор выполнен из немагнитного материала в виде трубы меньшего диаметра и размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора.

Вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором.

Механические ударные воздействия детонационных и ударных волн за счет ударной деполяризации сегнетоэлектрика преобразуются в импульсную электрическую энергию. Пьезогенератор состоит из блока пьезоэлектрических элементов, соединенных параллельно, и резонансного контура.

В резонаторе при взаимодействии сверхзвуковых струй активированной смеси, выходящих из кольцевого сопла, инициируется химическая реакция воспламенения смеси и ударная волна, которая после отражения от вогнутого дна резонатора фокусируется и, создавая в месте фокусировки высокую температуру и давление, обеспечивает возникновение детонационного горения и распространения детонационной волны в обоих продольных направлениях. После выхода продуктов сгорания со сверхзвуковой скоростью в атмосферу возникает волна разрежения, которая обеспечивает всасывание новой порции активированной смеси, и процесс повторяется.

Первый вариант пульсирующего детонационного двигателя состоит из:

Корпуса;

Средства для подачи горючего и окислителя в реактор;

Реактора в виде трубы, в которую в передней части поступает топливно-воздушная смесь, а ее задний конец загнут вовнутрь и образует кольцевое сопло Гартмана;

Средств импульсной активации топливно-воздушной смеси, размещенных в реакторе на выходах кольцевого сопла Гартмана;

Резонатора из немагнитного материала в виде трубы меньшего диаметра, размещенной в трубе реактора. Передний конец трубы резонатора имеет вогнутое дно, а задний соединен с выходом кольцевого сопла;

На внутренней поверхности резонатора имеется шероховатость в виде нарезки, на внешней поверхности резонатора установлены два постоянных магнита, создающих магнитное поле внутри резонатора, направленное перпендикулярно его продольной оси;

Вогнутое дно резонатора состоит из двух частей, разделенных буфером, обеспечивающим уменьшение силы ударного воздействия. Внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных параллельно, обеспечивающих преобразование кинетической энергии ударной волны в электрическую энергию;

Электрический выход пьезогенератора соединен с входами средств импульсной активации топливно-воздушной смеси.

Второй вариант устройства отличается от первого тем, что:

Точка пересечения струй ионизированной топливно-воздушной смеси, вытекающей из сопла Гартмана, совмещена с точкой фокусирования отраженной ударной волны. Такое совмещение улучшает условия возникновения детонационной волны;

Выход резонатора выполнен в виде расширяющегося реактивного сопла, обеспечивающего дополнительный газодинамический разгон рабочего тела (ионизированного газового потока);

На наружной поверхности реактивного сопла размещены два постоянных магнита, создающих магнитное поле внутри сопла, направленное перпендикулярно его продольной оси;

На внутренней поверхности резонатора отсутствует шероховатость в виде нарезки.

Новыми существенными признаками обоих устройств являются:

Размещение резонатора в виде трубы меньшего диаметра в трубе реактора так, чтобы выход кольцевого сопла был направлен во внутреннюю полость резонатора;

Установка на внешней поверхности резонатора или реактивного сопла двух постоянных магнитов, создающих магнитное поле внутри резонатора или сопла, направленное перпендикулярно их продольной оси;

Изготовление вогнутого дна резонатора из двух частей, разделенных буфером, уменьшающим ударные нагрузки. Внутренняя часть дна выполнена из материала, выдерживающего высокие импульсные воздействия детонационных волн, а наружная - из блока пьезоэлектрических элементов, соединенных параллельно, образующих пьезогенератор;

Выход источника импульсного тока соединен последовательно с входами средств импульсной активации, расположенных в реакторе на выходах кольцевого сопла Гартмана.

Технический результат, который может быть получен при реализации совокупности признаков, заключается в следующем:

Предварительная подготовка смеси за счет ее вихревого смешения и активации, а также конструктивные особенности резонатора и реактора обеспечивают повышение эффективности горения и мощности детонационных волн, увеличивающих силу тяги и удельные тяговые характеристики двигателя;

Кинетическая энергия ударных волн о дно резонатора ранее использовалась только для создания тяги, в предлагаемом устройстве она еще преобразуется в электрическую энергию, которая используется для активации смеси окислителя и горючего. Такое техническое решение приводит к снижению массогабаритных характеристик двигателя и упрощает его конструкцию.

Сущность изобретения поясняется чертежами, где на Фиг.1 представлен первый вариант устройства, на Фиг.3 - второй вариант устройства, а на Фиг.2 - схема импульсного источника тока и его связь со средствами активации.

Устройства содержат корпус 1, реактор 2, заполняемый с помощью блока 11 окислителем и горючим, в которое введены легкоионизированные добавки, импульсное средство активации топливно-воздушной смеси 3, кольцевое сопло 4, постоянные магниты 5, реактивное сопло 7 или шероховатость в виде нарезки 7 на внутренней поверхности резонатора 6 для турбулизации газового потока. Дно резонатора состоит из трех частей. Внутренняя часть дна 8 выполнена из высокопрочного материала, промежуточная часть - буфер 9 для снижения силы ударного воздействия на пьезоэлектрические элементы, наружная - в виде пьезогенератора 10 с резонансным контуром 13. Для усиления конструкции реактор и резонатор соединены кольцевой стойкой 12, через отверстия в которой проходят провода, последовательно соединяющие выход пьезогенератора 10 с электродами средств активации.

Работа пульсирующего детонационного двигателя начинается с заполнения блоком 11 реактора 2 под давлением окислителем и горючим через тангенциально и продольно направленные патрубки. Струи горючего, вращаясь, пересекаются со струей окислителя, образуя вихревое смешение.

От внешнего источника подается запускающая серия импульсов на средства активации топлива 3, которые обеспечивают разложение топливно-воздушной смеси на выходе сопла Гартмана на химически активные составляющие. Ионизированная топливно-воздушная смесь вытекает со сверхзвуковой скоростью из сопла в виде радиальных струй, направленных во внутреннюю полость резонатора 6.

При их столкновении и смешивании инициируется химическая реакция воспламенения топлива и возникает ударная волна, движущаяся в сторону днища резонатора 6.

Шероховатость внутренних стенок 7 резонатора 6 обеспечивает высокую интенсивность турбулентного смешивания в сдвиговых слоях за счет вихревых движений в области за препятствиями и за счет генерации поперечных ударных волн.

Между ускоряющейся зоной турбулентного горения и головной ударной волной возникают «горячие точки» вследствие неоднородности потока на контактных поверхностях, образованных шероховатостью 7. В таких локальных экзотермических центрах зарождается детонация.

Кроме того, головная ударная волна после отражения от вогнутого дна резонатора фокусируется и, создавая в этом месте высокую температуру и давление, обеспечивает возникновение детонационного горения и распространение детонационной волны в обоих продольных направлениях. Во втором варианте устройства при совмещении точки пересечения струй с точкой фокусировки отраженной ударной волны надобность в шероховатости внутренней поверхности резонатора отпадает.

Следующие за детонационными волнами сильно ионизированные газовые потоки, проходя через магнитное поле, вызывают возникновение сил, действующих на них в направлении движения. В результате увеличиваются скорости движения потоков, движущихся как в сторону дна резонатора, так и в противоположную сторону на выход из резонатора.

После отражения от дна детонационная волна становится отраженной ударной волной и вместе с ионизированным газовым потоком, проходя через магнитное поле, увеличивает скорость газового потока в направлении выхода из резонатора. Выход резонатора 6 выполнен в виде расширяющегося реактивного сопла, обеспечивающего дальнейшее увеличение скорости истекающих газов.

В течение механического воздействия детонационной волны на дно резонатора происходит деполяризация элементов сегнетоэлектриков, выполненных в виде блока из нескольких одинаковых пластин, соединенных электрически параллельно и расположенных по отношению друг к другу, как показано на Фиг.2. Такой пьезогенератор создает импульсы тока, амплитуда которых увеличивается при настройке контура 13 на резонанс. Импульсы с частотой следования детонационных процессов подаются на вход устройств активации топлива, обеспечивая разложение топливно-воздушной смеси на химически активные составляющие.

После выхода продуктов сгорания со сверхзвуковой скоростью в атмосферу возникает волна разрежения. Пониженное давление в полости резонатора обеспечивает всасывание новой порции активированной смеси и процесс повторяется.

Реализация заявленного технического решения не вызывает сомнения, так как при его изготовлении будут использоваться известные технологии организации детонационных процессов и преобразования энергии детонационной волны в электрическую энергию (Электрические явления в ударных волнах/ Под редакцией В.А.Борисенка и др. - Саров: РФЯЦ-ВНИИЭФ, 2005).

Было показано, что взрывные пьезогенераторы обладают оптимальными характеристиками как генераторы токовых импульсов, мощность которых достигает нескольких мегаватт, энергия - десятков джоулей, поэтому они обеспечат эффективную работу средств импульсной активации.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Пульсирующий детонационный двигатель, содержащий корпус, средства для подачи горючего и окислителя в реактор, кольцевое сопло и газодинамический резонатор, отличающийся тем, что резонатор в виде трубы меньшего диаметра размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора, причем вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором.

2. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что на внешней поверхности резонатора или реактивного сопла установлены два постоянных магнита, создающих магнитное поле внутри резонатора, направленное перпендикулярно их продольной оси.

3. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что выход пьезогенератора соединен с входами средств импульсной активации.

4. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что конструктивно резонатор выполнен так, что совмещены точка пересечения струй топливно-воздушной смеси, вытекающей из кольцевого сопла, и точка фокусировки отраженной ударной волны.

5. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что средства импульсной активации размещены на выходах кольцевого сопла Гартмана.

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает , средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.