» »

Генератор из шагового двигателя от принтера. Генератор из шагового двигателя

03.03.2020

С каждым годом люди ведут поиски альтернативных источников. Самодельная электростанция из старого автомобильного генератора будет кстати в отдалённых участках, где нет подключения к общей сети. Она сможет свободно заряжать аккумуляторные батареи, а также обеспечит работу нескольких бытовых приборов и освещения. Куда использовать энергию, что будет вырабатываться решаете вы, а также собрать его своими руками или приобрести у производителей, которых на рынке предостаточно. В этой статье мы поможем вам разобраться со схемой сборки ветрогенератора своими руками из тех материалов которые всегда есть у любого хозяина.

Рассмотрим принцип работы ветро-электростанции. Под быстрым ветровым потоком активируется ротор и винты, после в движение приходит основной вал, вращающий редуктор, а потом происходит генерация. На выходе мы получаем электричество. Следовательно, чем выше скорость вращения механизма, тем больше производительности. Соответственно, при расположении конструкций учитывайте местность, рельеф, знать участки территорий, где большая скорость вихря.


Инструкция сборки из автомобильного генератора

Для этого вам потребуется заранее приготовить всё комплектующие. Самым важным элементом является генератор. Лучше всего брать тракторный или автобусный, он способен выработать намного больше энергии. Но если такой возможности нет, то вероятнее стоит обойтись и более слабыми агрегатами. Для сборки аппарата вам понадобится:
вольтметр
реле аккумуляторной зарядки
сталь для изготовления лопастей
12 вольтовый аккумулятор
коробка для проводов
4 болта с гайками и шайбами
хомуты для крепления

Сборка устройства для дома на 220в

Когда все потребное готово переходите к сборке. Каждый из вариантов может иметь дополнительные детали, но они чётко оговариваются непосредственно в руководстве.
Первым делом соберите ветряное колесо - главный элемент конструкции, ведь именно эта деталь будет преображать энергию ветра в механическую. Лучше всего, чтобы у него было 4 лопасти. Запомните, что чем меньше их количество, тем больше механической вибрации и тем сложней будет его сбалансировать. Делают их из листовой стали или железной бочки. Форму они должны носить не такую, как вы видели в старых мельницах, а напоминающие крыльчатый тип. У них аэродинамическое сопротивление намного ниже, а эффективность выше. После того как вы с помощью болгарки, вырежете ветряк с лопастями диаметром 1.2-1.8 метра, его вместе с ротором требуется прикрепить с осью генератора, просверлив отверстия и соединив болтами.


Сборка электрической схемы

Закрепляем провода и подключаем их непосредственно к аккумулятору и преобразователю напряжения. Требуется использовать все, что в школе на уроках физики вас учили мастерить при сборке электрической схемы. Перед началом разработки подумайте, какие кВт вам нужны. Важно отметить, что без последующей переделки и перемотки статора вовсе не пригодны, рабочие обороты составляют 1,2 тыс-6 тыс. об/м, а этого недостаточно для производства энергии. Именно по этой причине требуется избавится от катушки возбуждения. Чтобы поднять уровень напряжения, перемотайте статор тонким проводом. Как правило, в результате мощность будет при 10 м/с 150-300 ватт. После сборки ротор хорошо будет магнитить, будто к нему подключили питание.

Роторные самодельные ветрогенераторы очень надёжны в работе и экономично выгодны, единственным их несовершенством является страх сильных порывов ветра. Принцип работы имеет простой - вихрь через лопасти заставляет механизм крутиться. В процессе этих интенсивных вращений вырабатывается энергия, необходимого вам напряжения. Такая электростанция – это очень удачный способ обеспечить электричеством небольшой дом, конечно, чтобы выкачивать воду из скважины его мощности будет недостаточно, но посмотреть телевизор или включить свет во всех помещениях с его помощью возможно.

Из домашнего вентилятора

Сам вентилятор может быть в нерабочем состоянии, но из него требуется всего несколько деталей - это стойка и сам винт. Для конструкции понадобиться небольшой шаговый двигатель спаянный диодным мостиком для того, чтобы он выдавал постоянное напряжение, бутылочка от шампуня, пластиковая водопроводная трубка длиной примерно 50 см, заглушка для неё и крышка от пластикового ведра.



На станке делают втулку и фиксируют в разъёме от крыльев разобранного вентилятора. В эту втулку будет крепиться генератор. После закрепления, нужно заняться изготовлением корпуса. Срезают с помощью станка или в ручном режиме дно от бутылки шампуня. Во время отрезания, требуется также оставить отверстие на 10, чтобы в него вставить ось, выточенную из алюминиевого прута. Прикрепляют её с помощью болта и гайки к бутылочке. После того как была выполнена припайка всех проводов, в корпусе бутылочки проделывают ещё одно отверстие для вывода этих самых проводов. Протягиваем их и закрепляем в бутылочке сверху на генераторе. По форме они должны совпадать и корпус бутылки должен надёжно скрывать все его части.

Хвостовик для нашего устройства

Чтобы в будущем он улавливал потоки ветра с разных сторон, соберите хвостовик, использовав заранее подготовленную трубку. Хвостовая часть будет крепиться с помощью откручиваемой крышки от шампуня. В ней тоже делают отверстие и, предварительно надев на один конец трубки заглушку, протягивают её и закрепляют к основному корпусу бутылочки. С другой стороны, трубку пропиливают ножовкой и вырезают ножницами из крышки пластикового ведра крыло хвостовика, оно должно иметь круглую форму. Все что вам нужно, это попросту обрезать края ведра, которыми оно прикреплялось к основной ёмкости.


На заднюю панель подставки прикрепляем USB выход и складываем все полученные детали в одну. Крепить радио или подзаряжать телефон можно будет через этот вмонтированный USB порт. Конечно, сильной мощностью он от бытового вентилятора не обладает, но все же освещение одной лампочки может обеспечить.

Ветрогенератор своими руками из шагового двигателя

Устройство из шагового двигателя даже при небольшой скорости вращения вырабатывает около 3 Вт. Напряжение может подниматься выше 12 В, а это позволяет заряжать небольшой аккумулятор. В качестве генератора можно вставить шаговый двигатель от принтера. В таком режиме у шагового двигателя вырабатывается переменный ток, а его без труда преобразовать в постоянный, используя несколько диодных мостов и конденсаторы. Схему вы можете собрать собственноручно. Стабилизатор устанавливают за мостами, в следствии получим постоянное выходное напряжение. Чтобы контролировать зрительно напряжение, можно установить светодиод. С целью уменьшения потери 220 В, для его выпрямления, применяются диоды Шоттки.


Лопасти будут из трубы ПВХ. Заготовку рисуют на трубе, а затем вырезают отрезным диском. Размах винта должен составлять около 50 см, а ширина - 10 см. Нужно выточить втулку с фланцем под размер вала ШД. Она насаживается на вал двигателя и крепится с помощью винтов, непосредственно к фланцам будут крепиться пластиковые “винты”. Также проведите балансировку – от концов крыльев отрезаются кусочки пластика, угол наклона изменить посредством нагрева и изгиба. В само устройство вставляют кусок трубы, к которому его тоже прикрепляют болтами. Что касается электрической платы, то её лучше разместить внизу, а к ней вывести питание. С шагового двигателя выходят до 6 проводов, которые соответствуют двум катушкам. Для них потребуются токосъёмные кольца для передачи электроэнергии от подвижной части. Соединив все детали между собой переходим к тестированию конструкции, которая будет начинать обороты при 1 м/с.

Ветряк из мотор-колесо и магнитов

Не каждый знает, что ветрогенератор из мотор-колеса можно собрать своими руками за короткое время, главное заранее запастись нужными материалами. Для него лучше всего подходит ротор Савониуса, его можно приобрести готовый или же самостоятельно. Он состоит из двух полуцилиндрических лопастей и перекрытия, из которых и получаются оси вращения ротора. Материал для их изделия выбирайте самостоятельно: дерево, стеклоткань или пвх-трубу, что является самым простым и оптимальным вариантом. Изготовляем место соединения деталей, на котором нужно проделать отверстия для крепления в соответствии с количеством лопастей. Потребуется стальной поворотный механизм, чтобы устройство могло выдерживать любую погоду.

Из ферритовых магнитов

Ветрогенератор на магнитах будет сложно освоить малоопытным мастерам, но все же можно попробовать. Итак, должны быть четыре полюса, в каждом будет находиться по два ферритовых магнита. Покрывать их будут накладки из металла толщиной чуть меньше миллиметра для распределения более равномерного потока. Основных катушек должно быть 6 штук, перемотаны толстым проводом и должны находиться через каждый магнит, занимая пространство, соответствующее длине поля. Крепление схем обмотки может быть на ступице от болгарки, в середину которой установлен заранее выточенный болт.

Регулируется поток подачи энергии высотой закрепления статора над ротором, чем он выше, тем меньше залипаний, соответственно мощность понижается. Для ветряка нужно сварить опору-стойку, а на диске статора закрепить 4 больших лопасти, которые вы можете вырезать из старой металлической бочки или крышки от пластикового ведра. При средней скорости вращения выдаёт примерно до 20 ватт.

Конструкция ветряка на неодимовых магнитах

Если вы хотите узнать о создании, нужно сделать основой ступицу автомобиля с дисками тормоза, такой выбор вполне оправдан, ведь она мощная, надёжная и хорошо сбалансированная. После того как вы отчистите ступицу от краски и грязи, переходите к расстановке неодимовых магнитов. Их потребуется по 20 штук на диске, размер должен составлять 25х8 миллиметров.

Магниты нужно размещать, учитывая чередование полюсов, перед склейкой лучше создать бумажный шаблон либо прочертить линии, делящие диск на сектора, чтобы не перепутать полюса. Очень важно, чтобы они, стоящие друг напротив друга, были с разными полюсами, то есть притягивались. Клеят их супер-клеем. Поднимите бордюрчики по краям дисков, и в центре намотайте скотч или залепите пластилином для недопущения растекания. Чтобы изделие работало с максимальной отдачей, катушки статора следует рассчитать правильно. Увеличение количества полюсов приводит к росту частоты тока в катушках, благодаря этому, устройство даже при низкой частоте оборота даёт большую мощность. Намотка катушек осуществляется более толстыми проводами, с целью снижения сопротивления в них.

Когда основная часть готова, изготовляют лопасти, как в предыдущем случае и закрепляют их к мачте, что может быть изготовлена из обыкновенной пластиковой трубы с диаметром- 160 мм. В конце концов наш генератор, работающий на принципе магнитной левитации, с диаметром в полтора метра и шестью крыльями, в 8м/с, способен обеспечить до 300 Вт.

Цена разочарования или дорогой флюгер

Сегодня существует множество вариантов как сделать устройство для преобразования энергии ветра, каждый способ по-своему эффективен. Если вы ознакомлены с методикой изготовления оборудования вырабатывающего энергию, то будет неважно на базе чего его делать, главное, чтобы он отвечал задуманной схеме, и на выходе давал хорошую мощность.

Приведено на сайте, был изготовлен и используется по настоящее время, ветрогенератор на базе двигателя постоянного тока (24v / 0,7A) на постоянных магнитах. Ветрогенератор, при средних погодных условиях, в зависимости от скорости ветра, обеспечивает выходное напряжение величиной от 0,8 до 6,0 вольт и ток до 200 ма. В дальнейшем, стабилизированный преобразователь напряжения преобразует это выходное напряжение постоянного тока от ветрогенератора в необходимое напряжение постоянного тока, достаточное для заряда аккумуляторной батареи или питания необходимой нагрузки.

Предлагаемый ветрогенератор прост в изготовлении, не требует точных расчетов и изготовления сложных деталей, приобретения дорогостоящих комплектующих. Такому ветрогенератору, кроме варианта рассмотренного в указанной выше статье, возможно найти и другое применение. Используем его там, где может понадобиться небольшое количество электроэнергии для питания маломощного устройства. Например, для работы компактной метеостанции, контроля уровня воды в баке, для дежурного освещения и управления автоматикой теплицы. В течение суток, при наличии ветра, аккумулятор устройства с запасом получает даровую энергию ветра, а в нужное время отдает ее потребителю по мере необходимости. Конечно, попадающая к нам энергия ветра не велика, но она приходит к нам практически постоянно. А если изготовить устройство для ее накопления и использования своими руками , из подручных материалов, то эта энергия и бесплатна, а устройство, кроме того, будет экономным, компактным, мобильным и энергонезависимым.

В этой статье предлагается изготовить ветрогенератор из двигателя постоянного тока.

Изготовление ветрогенератора.

1. Выбор электрогенератора.
Для применения в качестве маломощного электрогенератора для устройства, можно использовать без переделок готовый шаговый двигатель. Для максимальной отдачи, при возможности выбора, желательно использовать двигатель с минимально возможным залипанием вала и с максимально большим числом шагов на один оборот. Возможен вариант переделки электродвигателя или стартера в генератор. Различные варианты переделки описаны в интернете.

В нашем случае, был выбран наиболее простой вариант. В качестве электрогенератора используем двигатель постоянного тока (24v / 0,7A) на постоянных магнитах, не требующий доработок. Он обладает свойством обратимости – при вращении его вала, на контактах двигателя появляется напряжение. Данный электродвигатель был извлечен из морально устаревшей счетной машинки.

2. Выбор конструкции пропеллера.
В первом варианте конструкции ветрогенератора, для упрощения изготовления, за основу пропеллера был взят пластмассовый пропеллер, с подходящим посадочным диаметром, от промышленного вентилятора. Для повышения крутящего момента на валу генератора, длина его лопастей была добавлена тонкостенными металлическими накладками с профилем, приближенным к оригиналу.

Однако такая конструкция пропеллера потерпела неудачу. При сильном ветре, из-за малой жесткости пластмассового пропеллера, металлические накладки лопастей отклонялись назад и ударялись о стойку конструкции, что в итоге окончилось поломкой.


При отработке первого варианта определился с конструкцией технологичного профиля лопастей и их длиной. Эти параметры пропеллера влияют на его чувствительность к слабому ветру, а он преобладает. Необходимо, чтобы при небольшом ветре, пропеллер смог преодолеть залипание вала (притяжение магнитов статора) и начать вращение.

3. Изготовление пропеллера. Подбираем или изготовляем ступицу для установки и крепления лопастей пропеллера.
В нашем случае она представляет собой алюминиевый фланец (толщиной 4 мм, наружный диаметр 50 мм) с осевым отверстием по диаметру выходного вала двигателя (8 мм – на валу запрессована зубчатая шестерня, длиной 10 мм) и четырьмя равномерно расположенными отверстиями М4 для крепления лопастей. Для закрепления ступицы на валу, устанавливаем в ней один или два винта М4 (см. фото).


4. Изготовление лопастей пропеллера.
Из оцинкованного листа толщиной 0,4-0,5 мм вырезаем 4 заготовки в форме равнобедренной трапеции: высота 250 мм, основание 50 мм, верхняя сторона 20 мм. Вдоль высоты трапеции сгибаем лопасти пополам (создание ребра жесткости) на угол 45 градусов (см. фото). Притупляем острые кромки и углы (для своей безопасности).

5. Установка и крепление лопастей пропеллера.
Располагаем лопасть на ступице так, чтобы точка сгиба на основании находилась над осью ступицы, а прилежащая половина основания - над крепежным отверстием ступицы (см. фото). Размечаем и сверлим в лопасти отверстие под соседний крепежный винт, диаметром 4,2 мм. Поочередно закрепляем винтами лопасти пропеллера.



6. Балансировка пропеллера.
Выполняем статическую балансировку пропеллера. Для чего устанавливаем и закрепляем пропеллер на калиброванный (шлифованный) пруток, диаметром равным диаметру выходного вала двигателя. Укладываем пруток с пропеллером на две горизонтально выверенные по уровню линейки (лекальные поверхности), расположенные по концам прутка. При этом пропеллер повернется и одна из лопастей опустится вниз. Повернем пропеллер на четверть оборота и если та же лопасть, вновь опустилась вниз, ее необходимо облегчить, отрезав узкую полоску металла с бока лопасти. Повторяем аналогичную операцию до тех пор, пока пруток с пропеллером не перестанет поворачиваться после установки в любое произвольное положение.

7. Изготовление флюгерной части ветрогенератора.
Отрезаем алюминиевый угольник 20 х 20 мм на длину 250 мм. С одной стороны угольника, на один-два винта (заклепки) устанавливаем вертикальный стабилизатор направления на ветер.

С другой стороны угольника, устанавливаем и закрепляем на два винта хомут для крепления двигателя – генератора. Хомут и стабилизатор изготовлены также из оцинкованного листа толщиной 0,4-0,5 мм (возможны варианты применяемого антикоррозионного материала). Длина хомута равна длине двигателя. Длина стабилизатора примерно 200 мм, форма на вкус изготовителя.

На нижней полке угольника, посередине расположения хомута, жестко закрепить стержень (желательно предусмотреть его антикоррозионную защиту) для установки конструкции в трубе стойки ветрогенератора. Лучшим вариантом определения точки расположения этого стержня, это определение центра тяжести предварительно и полностью собранной конструкции, с последующим сверлением там отверстия для крепления стержня.

8. Сборка ветрогенератора.
Устанавливаем двигатель – генератор на место и закрепляем его хомутом. На выходной вал двигателя закрепляем винтами пропеллер. Для защиты генератора от атмосферных осадков, из подходящего по размерам пластмассового флакона вырезаем и устанавливаем на место защитное ограждение. Крепим его винтом.

Электроснабжение загородных домов, дачных или коттеджных поселков зачастую отличается нестабильностью. Линии изношены, перебои от аварий или обрыва проводов происходят гораздо чаще, чем бы хотелось. На исправление повреждений не требуется много времени, но и небольшие промежутки создают немало неудобств. Решением вопроса может стать установка , способного обеспечить энергией основные потребляющие приборы.

Мини-ветрогенератор своими руками

Размеры ветрогенератора необязательно должны поражать воображение своей грандиозностью. Вырабатывать ток способна и небольшая установка, созданная из мелких подручных деталей или устройств. Она может стать учебным пособием для детей, источником освещения для аварийных ситуаций, зарядником для батареи мобильного телефона и т.д.

Расходы снижаются в десятки раз, эффективность получается такой, какую заложили при создании проекта. В качестве пробной модели, позволяющей отработать технологию и получить некоторый опыт в создании подобных устройств, может стать мини-ветрогенератор. Для изготовления можно использовать различные от вышедшего из строя или устаревшего оборудования.

Используем старый компьютерный кулер

Для изготовления ветряка нужен большой кулер, он выдает лучшие результаты и удобен в работе. Прежде всего, надо его разобрать. Снимается наклейка, удаляется заглушка и стопорное кольцо. После этого кулер легко разбирается по оси вращения на две примерно одинаковые по размерам половины.

Одна из них - ротор, лопасти которого придется изменить на более крупные. Для этого аккуратно обламываются или отрезаются старые лопасти, из пластиковой бутылки делаются новые, длиной примерно раза в 4 больше прежних. Удобнее всего сделать три штуки, они будут иметь достаточную площадь основания для прочного приклеивания.

На статоре имеются четыре обмотки. Их можно оставить в неприкосновенности, или изменить число витков. Берется более тонкий провод и наматывается на все по очереди, причем, в разном направлении. Катушки соединяются соответствующим образом.

После этого необходимо изготовить выпрямитель, для чего понадобятся четыре диода. Они парами соединяются последовательно, затем параллельно. Присоединяются провода, устройство готово. Для установки его на ветер понадобится подставка или небольшая мачта, которую проще всего изготовить из обрезка металлической трубки. Для того, чтобы ветряк самостоятельно наводился на ветер, понадобится хвостовой стабилизатор, наподобие самолетного хвоста.

Для проверки работоспособности присоединяется тестер или светодиодный фонарик.

Устройство для зарядки автомобильной АКБ

Небольшой ветрогенератор, способный зарядить автомобильный аккумулятор - весьма практичное и нужное устройство. Необходимо обеспечить напряжение, не превышающее номинал АКБ (обычно 12 В), иначе появится риск перезаряда и закипания батареи.

В качестве генератора потребуется самодельное устройство соответствующей мощности или готовый асинхронный двигатель, тракторный или автомобильный генератор, способные создавать напряжение заряда. Для защиты от перезарядки потребуется контроллер на основе автомобильного реле-регулятора, отключающий заряд при появлении слишком высокого напряжения.

Походный ветрогенератор

Иметь походный ветряк , позволяющий получить максимальный комфорт от пребывания на природе, удобно и полезно для каждого любителя путешествий. Требования к такому ветряку очевидны:

  • компактность
  • возможность быстрой сборки или разборки для транспортировки
  • мощность, обеспечивающая электроэнергией необходимые устройства

Понадобится изготовить крыльчатку с отсоединяющимися лопастями и генератор, выдающий достаточную мощность. Оптимальный вариант - горизонтальный тип, с лопастями на винтах. Генератор лучше всего приспособить от автомобиля, он нуждается в небольшой модернизации (перемотка катушек) и установке магнитов на ротор (используются неодимовые магниты для возбуждения обмоток).

На природе достаточно закрепить устройство на стволе дерева или иной подходящей опоре и навести на ветер. Для компактности можно не делать устройство вращения вокруг вертикальной оси и регулировать положение вручную.

Ветряк из шагового двигателя от принтера

Шаговые двигатели способны выдавать 12 и более вольт, но сила тока у них мала. Конструкция не позволяет усиливать их обмотки, поэтому используются как есть. На вал устанавливаются лопасти соответствующего размера, сделанные из полипропиленовых канализационных труб. Потребуется собрать простейший выпрямитель. Обычные шаговые двигатели в теории способны за пару дней зарядить аккумулятор мобильного телефона, но на практике этого добиться очень сложно возможно использование для подсветки с помощью светодиодных фонариков.

Другие возможные варианты

Для изготовления мини-ветрогенератора можно использовать любые электродвигатели от бытовых приборов. Можно приспособить двигатель от лентопротяжного механизма, от старой микроволновки (вентилятор), разные варианты щеточных конструкций. Все они имеют малую мощность и не смогут обеспечить сколько-нибудь серьезные устройства, но как пробные модели, созданные вместе с детьми и дающие опыт и понимание процесса, все эти варианты вполне подойдут.

На базе полученных знаний и навыком может быть создан более производительный ветрогенератор, способный обеспечивать потребности частного дома, перевести его в автономный режим электропитания.

Tigrezno

Ниже предоставлена инструкция, с помощью которой вы сможете «переработать» старый сканер в впечатляющий генератор электричества.

Нам понадобятся:

  • Старый сканер;
  • Выпрямляющие диоды (в проекте использовано 8 диодов 1N4007);
  • Конденсатор 1000 мкФ;
  • Труба ПВХ;
  • Пластиковые детали (см. ниже);
  • Алюминиевые пластины (можно использовать любые другие).

Помимо флуоресцентной трубы и электронных компонентов, в сканере есть шаговый двигатель, именно он нам и понадобится. На фото показан четырехфазный шаговый двигатель.

Заметка 3. Было использовано свободное ПО для разработки схемы http://qucs.sourceforge.net/.

Собираем лопасти. Более подробно .

К сожалению схемы устройства нет, однако собрать похожее по фотографии не так уж и сложно.

Конец! Теперь осталось дождаться ветряного дня и опробовать устройство, как видно на фотографии - устройство стабильно генерирует напряжение 4.95 В. Теперь вы можете бесплатно заряжать МР3 плеер или телефон!

  • Вот. Отлично человек сказал. Вопрос же не в "сказочном КПД": энергия все равно даровая. Планета не обеднеет от таких Кулибиных. Вопрос в трудозатратах и стоимости всего применяемого. Вопрос весьма спорный: вертикалка жутких габаритов, или горизонталка, но поворачиваемоя. Вот это - тема для споров (а лучше, если их кто-то погасит практическим опытом и поделится).
  • привет всем. у меня чуть посложнее. освещение двора светодиодными фонариками (5шт. по 7 светодиодов). аккумулятор стоит 7.2 вольта 700 ма. собирал по схеме удвоения напряжения.:).
  • ветер средний, незнаю чем замерить... немного перестал, да и неповетру стоит.
  • а вот "головка". (убрал мультипликатор, залипания намного с ним сельнее а разница минимальная, да и не шумит). вертикальный у меня вообше нешумит и светит уже 1.5 года без аккумулятора (тоже ШД).
  • mba1 прав, и у вертикалок более 200 об/мин под большим сомнением.
  • Лопасти мне кажется у Вас большие для такого движка. Подогнать размер под мощность, глядишь совсем правильный ветрячок будет. Не замеряли параметры?
  • Лопасти сделал поуже и укоротил, диаметр примерно 1.1м, обороты повысились, да и крутится когда ветра и нечувствуешь. фанарей уже 6:). вот видео - http://depositfiles.com/files/18bs0ha7b
  • параметры уже непомню, при среднем ветре около 8 вольт, ма -хз, сейчас лезть туда неочень хочеться, да и голова другим забита, неодимовые магнитики жду(24шт), на днях придут:), буду генератор мастерить:).
  • Если нужен шаговый двигатель то тогда не из сканера, а из принтера, в матричьнеке их два, даже при обслуживание при быстром перемещение головки свето диоды начинали светится. Думаю начать не с серьезной поделки, а взять для начала движек от жигулевской печьки, или моторчик от стекло очистителя в гараже валяется.
  • Есть коллекторные движки (например, ДП..., ДПМ...) с центробежным ограничителем оборотов. Может, есть идеи, как это приспособить для обратной задачи в генераторе? Мне так сходу как-то и не соображается...
  • А изШД3-ШД5 кто то может мутил?
  • Или с моторами от авио моделей-размеры маленькие мощность большая?
  • http://vkontakte.ru/club11998700 - ТАМ ЕСТЬ И ФОТО И ВИДЕО шд, неодимовые, ссылки....
  • А параметры у движков какие? вольт на катушку? ампераж? сколько катушек (выводов?) и какой градус поворота?
  • шд желательно подбирать - меньше сопротивление обмотки, большее рабочее напряжение, тогда на шаг приличьно импульс будет давать:)
  • Если меньше сопротивление при большем напряжении - значит, мощность больше. Так что можно подбирать по РАЗМЕРУ:)
  • http://www.youtube.com/watch?v=7WgS4kxobI0&feature=channel_video_title
  • Это моё видео.
  • Кто знает,любой ШД можно использовать как генератор?Если купить помощнее чем в принторе.
  • Использовать мощный ШД в качестве генератора затруднительно. Причина в большом моменте трогания.

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор. Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.

Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения “серьезных” потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor ) – в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.

Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.

Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.

Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum – совместимого компьютера “Байт”.

Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы – итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1 ) – синий (англ. blue ) и желтый (англ. yellow );

вторая обмотка (англ. coil 2 ) – красный (англ. red ) и белый (англ. white );

коричневые (англ. brown ) провода – выводы от средних точек каждой обмотки (англ. center taps ).

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны “полосатые” магнитные полюсы – северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.

Сопротивление половины обмотки составляет

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1 ) – оранжевый (англ. orange ) и черный (англ. black );

вторая обмотка (англ. coil 2 ) – коричневый (англ. brown ) и желтый (англ. yellow );

красный (англ. red ) провод – соединенные вместе выводы от средней точки каждой обмотки (англ. center taps ).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558 , произведенный в ГДР и рассчитанный на напряжение 12 В:

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора – горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток – усложнение конструкции.

Я выбрал вертикальное расположение оси – VAWT (vertical axis wind turbine ), что существенно упрощает конструкцию и не требует ориентации по ветру . Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ. Savonius wind turbine ). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius ) из Финляндии.

Сигурд Йоханнес Савониус

Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag ) набегающему потоку воздуха – ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

вогнутая половина цилиндра (1) – 2,30

выпуклая половина цилиндра (2) – 1,20

плоская квадратная пластина – 1,17

вогнутая полая полусфера (3) – 1,42

выпуклая полая полусфера (4) – 0,38

Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers ) в диапазоне $10^4 – 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку $ = <<1 \over 2> S \rho > $, где $\rho$ – плотность воздуха, $v$ – скорость воздушного потока, $S$ – площадь сечения тела.

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) – приборе для измерения скорости ветра:

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson ):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson ) в 1926 году:

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125p70 . Номинальное напряжение питания такого двигателя составляет 3 . 12 В.

Энергии, вырабатываемой таким генератором, хватает для свечения “белого” светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра , но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque ).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:

$P = <1\over 2>\rho S $ , где $\rho$ – плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ – ометаемая площадь турбины (англ. swept area ), $v$ – скорость ветра.

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб :

длина сегмента – 14 см;

высота сегмента – 2 см;

длина хорды сегмента – 4 см;

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок :

длина сегмента – 18 см;

высота сегмента – 5 см;

длина хорды сегмента – 7 см;

расстояние от начала сегмента до центра оси вращения – 3 см.

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:

Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия – 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.

Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Недостатком турбины Савониуса является невысокая эффективность – только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine )), использующей подъемную силу (англ. lift ). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) – патент США от 1931 года № 1,835,018.

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.

Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 – 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.

Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.

Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра – конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

В ветреную погоду напряжение холостого хода на выходе электронного блока ветрогенератора достигает 10 В, а ток короткого замыкания – 10 мА.

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Затем сглаженное напряжение с конденсатора может подаваться на Joule Thief – низковольтный DC-DC преобразователь. Я собрал такой преобразователь на базе германиевого pnp -транзистора ГТ308В (VT ) и импульсного трансформатора МИТ-4В (катушка L1 – выводы 2-3, L2 – выводы 5-6) :

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) – целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.

мой преобразователь Joule Thief

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

Ионистор (суперконденсатор, англ. supercapacitor ) представляет собой гибрид конденсатора и химического источника тока.

Ионистор – неполярный элемент, но один из выводов может быть помечен “стрелкой” – для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.

Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов – я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод – VD2 .

Мой самодельный ветрогенератор на шаговом двигателе, Мои увлекательные и опасные эксперименты


Мой самодельный ветрогенератор на шаговом двигателе Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор. Большие лопасти медленно, но верно вращались, флюгер

Шаговый двигатель в качестве генератора?

Валялся у меня шаговый двигатель и, решил я его попробовать использовать в качестве генератора. Двигатель был снят со старого матричного принтера, надписи на нем следующие: EPM-142 EPM-4260 7410. Двигатель попался униполярный, это означает что у этого двигателя 2 обмотки с отводом от середины, сопротивление обмоток составило 2х6ом.

Для теста нужен другой двигатель, чтобы раскрутить шаговый. Конструкция и крепление двигателей показаны на рисунках ниже:

Плавно запускаем двигатель, чтобы резинка не слетела. Надо сказать что на высоких оборотах она все же слетает, по этому напряжение выше 6 вольт не поднимал.

Подключаем вольтметр и начинаем тестировать, для начала меряем напряжение.

Думаю ничего объяснять не нужно и все понятно по фотографии ниже. Напряжение составило 16 вольт, обороты раскручивающего двигатели не большие, думаю если сильнее раскрутить то, можно и все 20 вольт выжать.

Выставляем напряжение чуть меньше 5 вольт, так, чтобы шаговый двигатель после моста выдавал около 12 вольт.

Светит! Напряжение при этом с 12 вольт просело до 8 и двигатель стал раскручивать чуть медленнее. Ток КЗ без светодиодной ленты составил 0.08А – напомню, что раскручивающий двигатель работал НЕ на полную мощность, и не забываем про вторую обмотку шагового двигателя, просто параллелить их нельзя, а собирать схему мне не хотелось.

Думаю, из шагового двигателя можно изготовить неплохой генератор, прицепить его на велосипед, или сделать на его основе ветрогенератор.

Шаговый двигатель в качестве генератора? Меандр - занимательная электроника


Шаговый двигатель в качестве генератора? Валялся у меня шаговый двигатель и, решил я его попробовать использовать в качестве генератора. Двигатель был снят со старого матричного принтера, надписи