» »

Втулка несущего винта предназначена для передачи вращения лопастям от главного редуктора, а также для восприятия сил и моментов, возникающих на несущем винте, и передачи их на фюзеляж. Приложение

19.09.2023

Схема втулки - пятилопастная, с разнесенными и повернутыми горизонтальными шарнирами, с разнесенными вертикальными шарнирами, с осевыми шарнирами.

Конструкция втулки выполнена таким образом, что при взмахе лопасти относительно горизонтального шарнира на угол Y происходит уменьшение истинного угла установки лопасти на величину Z = KY . Коэффициент пропорциональности K называется коэффициентом компенсатора взмаха.

С целью уменьшения свеса лопастей и создания необходимых зазоров между лопастями и хвостовой балкой при малой частоте вращения несущего винта в конструкцию втулки введены центробежные ограничители свеса лопастей.

Рис. 3.4. Схема втулки несущего винта

Схема втулки представлена на рис.3.4. На рисунке обозначены:

1 Вал редуктора; 2 Нижнее кольцо; 3 Корпус втулки; 4 Верхнее кольцо; 5 Гайка; 6 Шлицы; 7 Палец вертикального шарнира; 8 Корпус осевого шарнира; 9 Цапфа осевого шарнира; 10 Тяга разворота лопасти; 11 Палец горизонтального шарнира; 12 Проушина; 13 Скоба; 14 Демпфер вертикального шарнира; 15 Кронштейн крепления демпфера; 16 Рычаг поворота лопасти.

lгш – Разнос горизонтальных шарниров;

lвш – Разнос вертикальных шарниров;

А – Точка крепления тяги автомата перекоса к поводку осевого шарнира;

Q – Аэродинамическая сила;

R – Равнодействующая сила;

Fцб – Центробежная сила.

Основные технические данные втулки:

§ разнос вертикальных шарниров 507мм;

§ смещение середины проушины горизонтального шарнира 45мм;

§ величина коэффициента компенсатора взмаха 0,5;

§ угол взмаха вверх от плоскости, перпендикулярной оси вращения относительно ГШ 24,5-25,5 0 ;

§ угол свеса вниз от плоскости, перпендикулярной оси вращения относительно ГШ:

При упоре на скобу 3 0 40¢-4 0 10¢;

При упоре на собачку ЦОС 1 0 40¢-2 0 .

§ угол поворота относительно вертикального шарнира:

По вращению 12 0 15¢-13 0 15 ¢ ;

Против вращения 10 0 50¢-11 0 10 ¢ .

§ частота вращения НВ, при которой срабатывает центробежный ограничитель свеса (ЦОС):

При разгоне 105-111 об / мин (52-55%);

При торможении 92-98 об / мин (45,5-48,5%).

§ угол наклона оси НВ (вперед) 4 0 20¢-4 0 30¢;

§ диаметр втулки НВ 1744мм;

§ масса втулки НВ 610кг.

Основными узлами втулки несущего винта являются:

1. Корпус втулки, имеющий пять проушин, лежащих в одной плоскости под углом 72 0 друг к другу.

2. Пять скоб, проушины которых в соединении с проушинами корпуса втулки с помощью пальцев и игольчатых подшипников образуют горизонтальные шарниры.

3. Пять цапф осевых шарниров, которые в соединении с проушинами скоб образуют вертикальные шарниры.

4. Пять корпусов осевых шарниров, смонтированных на цапфах осевых шарниров с помощью подшипников.

5. Рычаги поворота лопастей, смонтированные на корпусах осевых шарниров.

6. Центробежные ограничители свеса лопастей, смонтированные в проушинах скоб.

7. Гидродемпферы, служащие для гашения колебаний лопастей относительно вертикальных шарниров и подпитываемые гидросмесью из компенсационного бачка, уровень жидкости, в котором должен находиться между верхней риской и нижней кромкой колпака.

Примечание: Втулки несущего винта вертолетов типа Ми-171 оборудуются осевыми шарнирами с магнитной пробкой и смотровым стаканчиком. Масло в шарнире должно быть прозрачным (видна противоположная стенка стаканчика).

Рис.3.5. Шарниры втулки несущего винта

1 – Заправочное отверстие осевого шарнира; 2 – Заправочное отверстие горизонтального шарнира; 3 – Заправочное отверстие вертикального шарнира.

Уровень масла в шарнирах втулки (от кромки заливных отверстий):

v в горизонтальных шарнирах 30-40мм;

v в вертикальных шарнирах 25-35мм;

v в осевых шарнирах 15-20мм.

В течение летного дня допускается снижение уровня масла в шарнирах:

v в горизонтальных шарнирах на 20мм;

v в вертикальных шарнирах на 20мм;

v в осевых шарнирах на 15мм.

Основные детали втулки несущего винта

А. Корпус

Корпус втулки сочленяется с валом главного редуктора шлицами 6 и закрепляется на нем гайкой 5 . Затяжку гайки производят специальным тарировочным ключом. Корпус имеет пять проушин 12 , лежащих в одной плоскости под углом 72° друг к другу.

Б. Горизонтальные шарниры

Пять скоб втулки 13 (рис.4.6) в соединении с проушинами корпуса 12 с помощью пальцев 11 и игольчатых подшипников образуют горизонтальные шарниры. Смещение проушин горизонтальных шарниров а, выбрано таким образом, чтобы на основных режимах полета равнодействующая R аэродинамических Q и центробежных сил F цб лопасти была направлена примерно по середине горизонтального шарнира. Такая конструкция обеспечивает более равномерное распределение нагрузки между игольчатыми подшипниками ГШ и существенно повышает их долговечность. Принципиальное устройство горизонтального шарнира представлено на рис.4.7.

Рис.4.7. Горизонтальный шарнир втулки несущего винта

1 – Проушина корпуса втулки;

2 – Палец горизонтального шарнира;
3, 7 – Резиновые уплотнительные кольца;

4 – Игольчатые подшипники;
5 – Проушины скобы;

6 – Распорные кольца

В. Вертикальные шарниры

Пять цапф осевых шарниров 9 (рис.4.6) в соединении с проушинами скоб 13 с помощьюпальцев образуют вертикальные шарниры.

Г. Осевые шарниры

На втулке имеются пять корпусов осевых шарниров 8 (рис.4.6), смонтированных на цапфах 9 .

Конструкция осевого шарнира показана на рис.4.8.

Рис.4.8. Осевой шарнир втулки несущего винта

1 – Цапфа осевого шарнира; 2 – Резиновое уплотнительное кольцо;
3, 9 – Упорные гайки; 4, 8 – Шариковые подшипники; 5 – Заливная пробка; 6 – Корпус шарнира; 7 – Роликовый подшипник; 10 – Гребенка;
11, 12, 15 – Распорные втулки; 13 – Сливная пробка; 14 – Резиновая манжета; 16 – Смотровой стаканчик; 17 – Компенсатор давления в шарнире; 18 - Заглушка

Корпус осевого шарнира 6 имеет возможность проворачиваться относительно цапфы 1 на трех подшипниках. Два шариковых подшипника 4 и 8 воспринимают изгибающие моменты от лопасти, а роликовый 7 – центробежные силы.

На днище стакана осевого шарнира имеется "гребенка" 10 с проушинами для крепления лопасти. Шарнир оборудуется сливной магнитной пробкой 13 со смотровым стаканчиком 16 . Масло в шарнире должно быть прозрачным (видна противоположная стенка стаканчика).

На заливную пробку 5 устанавливается компенсатор давления 17 , за счет прогиба мембраны увеличивающий свой объем при повышении давления в шарнире.

В настоящее время, в соответствии с конструктивной доработкой, при изготовлении втулки в пустотелую цапфу ОШ устанавливается гофрированный резиновый «чулок», выполняющий функцию компенсатора давления (рис. 4.8а, поз. 17). Компенсатор давления в шарнире (поз.17, рис. 4.8) при этом демонтируется.

Рис.4.8а. Осевой шарнир модифицированной втулки несущего винта

17 – Резиновый чулок

Д. Рычаги поворота лопастей

Рычаги поворота лопастей смонтированы на корпусах осевых шарниров и крепятся к тягам 6 (рис.4.1) тарелки автомата перекоса.

Примечание: При выполнении целевых периодических осмотров рычагов поворота лопастей ИТС применять лупу семикратного увеличения.

Втулка несущего винта

Основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на фюзеляж аэродинамических сил, возникающих на лопастях несущего винта. Различают следующие типы В. н. в.: шарнирные, упругие и жёсткие.
В конструкции шарнирной втулки крепление лопастей к корпусу втулки осуществляется посредством горизонтальных, вертикальных и осевых шарниров. Горизонтальные шарниры обеспечивают возможность махового движения лопастей. Вертикальные шарниры позволяют лопастям совершать колебания в плоскости вращения (эти колебания возникают под действием переменных сил лобового сопротивления и сил Кориолиса, появляющихся при колебаниях лопасти относительно горизонтального шарнира). Благодаря шарнирному сочленению лопастей с корпусом втулки значительно снижаются переменные напряжения в элементах несущего винта и уменьшаются передающиеся от винта на фюзеляж вертолёта моменты аэродинамических сил. Осевые шарниры В. н. в. предназначены для изменения углов установки лопастей. В целях уменьшения свеса (изгиба) лопастей и создания необходимых зазоров между лопастями и хвостовой балкой вертолёта при невращающемся несущем винте и при малой частоте вращения несущего винта в конструкцию В. н. в. введены центробежные ограничители свеса.
Во всех шарнирах, в которых используются подшипники качения, предусматриваются системы смазки и уплотнений. В осевых шарнирах в качестве элементов, воспринимающих центробежные силы лопастей, применяются пластинчатые и проволочные торсионы, изготовленные из высокопрочной нержавеющей стали. Имеются так называемые эластомерные В. н. в., в шарнирах которых применяются цилиндрические, конические или сферические эластомерные подшипники. Эти подшипники выполнены из слоев стали и привулканизированных к ним слоев эластомера. Отсутствие трущихся металлических деталей уменьшает износ узлов. Конструкция В. н. в. упрощается, устраняется необходимость применения торсионов, сокращается время на техническое обслуживание, увеличивается надёжность конструкции. В конструкциях шарнирных В. н. в. с целью предотвращения явления «земного резонанса» колебания лопастей относительно вертикальных шарниров гасятся с помощью демпферов. которые в зависимости от используемого рабочего элемента подразделяются на фрикционные, гидравлические, пружинно-гидравлические и эластомерные. Шарнирные В. н. в. в зависимости от схемы могут быть трёх типов: с разнесёнными горизонтальными шарнирами (оси горизонтальных шарниров находятся на некотором расстоянии от оси несущего винта), с совмещёнными горизонтальными шарнирами (оси горизонтальных шарниров пересекаются на оси несущего винта), с совмещёнными горизонтальными и вертикальными шарнирами (оси обоих шарниров пересекаются в одной точке, отнесённой на некоторое расстояние от оси несущего винта).
Упругая втулка может быть выполнена с упругим элементом только в одном вертикальном или горизонтальном шарнире либо сразу в обоих шарнирах. Корпус упругой В. н. в. изготовляется, как правило, из композиционных материалов. За осевым шарниром, который может быть выполнен по схеме с подшипниками качения и торсионом или с эластомерными подшипниками, расположена внешняя упругая часть втулки, обеспечивающая маховые движения лопасти. На несущем винте с такой втулкой может быть значительно повышена эффективность управления по сравнению с шарнирной В. н. в., что способствует увеличению манёвренности вертолёта.
Жёсткая втулка имеет прочный центр, корпус (обычно из титанового сплава), прикреплённый к жёсткому приводному валу, и осевые шарниры, к корпусам которых через гребёнки прикреплены лопасти из композиционных материалов. В несущем винте с такой втулкой лопасть совершает колебательные движение в плоскости тяги и вращения не путём поворота в шарнирах, а благодаря большим деформациям лопасти или её более тонкого комлевого участка. Эти деформации оказываются допустимым и вследствие высокой прочности композиционных материалов. Такой винт с жесткой втулкой может рассматриваться подобным винту с шарнирной втулкой, имеющей большой разнос горизонтальных шарниров (10-35% от радиуса винта). Вертолёт с жёсткой В. н. в. обладает хорошими характеристиками управляемости. Важным преимуществом жёсткой В. н. в. является её простота (отсутствие высоконагруженных подшипников в шарнирах, демпферов и центробежных ограничителей свеса лопастей), облегчающая и удешевляющая изготовление винта и обслуживание его в эксплуатации.

  • - пустотелый цилиндр, служит для опоры вращающихся валов или устанавливается в колесах, холостых шкивах и в таких случаях вращается сама. Изготовляется из материала более мягкого, чем вал или ось. В. бывают...

    Сельскохозяйственный словарь-справочник

  • - Обитый войлоком или сукном деревянный щит, закрывавший окно изнутри по всей его площади...

    Архитектурный словарь

  • - отношение площади лопастей несущего винта в плане к сметаемой площади. Определяется приближённо по формуле = zb/R), где R - радиус винта, z - число лопастей, b - хорда лопасти на радиусе 0,7R...

    Энциклопедия техники

  • - площадь поверхности, описываемой лопастями несущего винта при их вращении. О. п. вычисляется как площадь круга с радиусом, равным радиусу несущего винта...

    Энциклопедия техники

  • - вид привода несущего винта вертолёта, при котором крутящий момент создается силой реакции газов, вытекающих из установленных на концах лопастей реактивных двигателей или реактивных сопел...

    Энциклопедия техники

  • - острый угол в плоскости симметрии вертолёта между осью вала несущего винта и перпендикуляром к строительной горизонтали аппарата...

    Энциклопедия техники

  • - цилиндрич. или конич. деталь машины с осевым отверстием, о к-рое входит сопрягаемая деталь...

    Большой энциклопедический политехнический словарь

  • - Bushing - .Направляющая деталь или вкладыш подшипника...

    Словарь металлургических терминов

  • - центральная часть всякого колеса с цилиндрическим отверстием, предназначенная для насаживания колеса на ось или вал. ...

    Морской словарь

  • - сменяемая деталь механизма, через к-рую проходят вал, стержень или поршень, имеющие вращательное или прямолинейное поступательно-возвратное движение, вследствие чего изнашивается В., а не крупная деталь...

    Технический железнодорожный словарь

  • - ".....

    Официальная терминология

  • - имеет несколько различных значений, из которых главное представляет трубку, помещаемую внутри вращающегося предмета для предохранения от истирания...

    Энциклопедический словарь Брокгауза и Евфрона

  • - деталь машины, механизма, прибора цилиндрической или конической формы, имеющая осевое отверстие, в которое входит другая деталь...

    Большая Советская энциклопедия

  • - деталь машины или устройства в виде полого цилиндра, в отверстие которого входит сопрягаемая деталь. Втулки бывают сплошные и разрезные...

    Большой энциклопедический словарь

  • - Искон. Суф. производное от втулить «заткнуть», преф. образования от тулить «закрывать» . См. притулиться...

    Этимологический словарь русского языка

  • - ВТУ́ЛКА, -и, жен. 1. Цилиндрическая или конической формы деталь машины с продольным отверстием для вставляемой другой детали. 2. Затычка, пробка...

    Толковый словарь Ожегова

"Втулка несущего винта" в книгах

Все от винта!

Из книги Как по лезвию автора Башлачев Александр Николаевич

Все от винта! Рука на плече. Печать на крыле. В казарме проблем - банный день. Промокла тетрадь. Я знаю, зачем иду по земле, Мне будет легко улетать. Без трех минут - бал восковых фигур. Без четверти - смерть. С семи драных шкур - шерсти клок. Как хочется жить. Не меньше, чем

От винта!

Из книги От винта! автора Маркуша Анатолий Маркович

От винта!

Теория воздушного винта

Из книги Жуковский автора Арлазоров Михаил Саулович

Теория воздушного винта Когда погас фейерверк юбилея, снова возвратились будни. Как и прежде, Жуковский ездит на занятия, читает лекции в Техническом училище и университете, отдает много сил своему любимому детищу - воздухоплавательному кружку.Еще не получив диплома об

Система узловых аэропортов («втулка и спицы»)

Из книги Продажа товаров и услуг по методу бережливого производства автора Вумек Джеймс

Система узловых аэропортов («втулка и спицы») Большинство из нас вынуждено пользоваться услугами традиционных авиакомпаний, использующих систему узловых аэропортов: American, United, Northwest, Delta, Continental, US Airways в США и British Airways – в Европе.Идея, лежащая в основе системы узловых

От винта

Из книги Знаковые бренды автора Соловьев Александр

От винта В 1916 году в северном пригороде Мюнхена Обервизенфельде объединились две небольшие фирмы, выпускавшие авиамоторы. Событие могло остаться незамеченным, если бы одну из этих фирм не возглавлял сын знаменитого конструктора Николауса Августа Отто, которому

История Прометея - ещё один путь мужчины, несущего свет

Из книги Дорога Домой автора

История Прометея - ещё один путь мужчины, несущего свет Вместе все двенадцать подвигов Геракла - это двенадцать ступеней, которые должен пройти человек, когда становится на путь служения. Это двенадцать Сил, которыми должен овладеть каждый герой, ЧТОБЫ СТАТЬ БОГОМ и

Высверливание винта рычага

Из книги Руководство слесаря по замкам автора Филипс Билл

Высверливание винта рычага Когда вы не в состоянии переместить кулачок привода, например когда есть сломанные или потерянные детали, может потребоваться высверлить винт рычага. Высверлив винт рычага, можно щупом попытаться переместить засов в открытое

Втулка

Из книги Большая энциклопедия техники автора Коллектив авторов

Втулка Втулка – цилиндрической (преимущественно) формы изделие, выполненное из различных марок стали, чугуна, сплавов и пластмасс высокой прочности; широко применяется в различных механизмах и приборах. Например, в приборе Роквелла устанавливается специальная

Втулка

Из книги Большая Советская Энциклопедия (ВТ) автора БСЭ

2. Срыв или износ резьбы винта щеки или винта средника.

Из книги Руководство по ремонту револьвера Наган 1895 автора Автор неизвестен

2. Срыв или износ резьбы винта щеки или винта средника. (I) Заменить

Конец эры винта

Из книги Me 262 последняя надежда Люфтваффе Часть 1 автора Иванов С. В.

Конец эры винта Когда в 1939 г. вспыхнула II мировая война, самолет уже был весьма важным фактором в бою. Со времен братьев Райт авиастроение прошло большой путь. Постепенно усовершенствовалась конструкция, появились новые технические решения, разработана оптимальная

Совершенствование воздушного винта

Из книги Британские асы пилоты «Спитфайров» Часть 1 автора Иванов С. В.

Совершенствование воздушного винта Первые «Спитфайры» имели двухлопастные деревянные воздушные винты; начиная с 78-го самолета на истребители стали ставить металлические трехлопастные винты фирмы де Хэвиленд, которые имели два положения установки шага лопастей.

Без винта

Из книги Продать и предать [Новейшая история российской армии] автора Воронов Владимир

Без винта Новейший ударный вертолет обещали армии пару десятилетий - то «Черную акулу» Ка-50, то «Ночной охотник» Ми-28Н, то «Аллигатор» Ка-52, а то и сразу все вместе. «Скоро… испытания завершены… не имеющий аналогов…» - твердили сменяющие друг друга главкомы ВВС,

История Прометея – ещё один путь мужчины, несущего свет

Из книги Древняя мудрость Руси. Сказки. Летописи. Былины автора Жикаренцев Владимир Васильевич

История Прометея – ещё один путь мужчины, несущего свет Геракл освободил Прометея, после того как совершил десять подвигов и стал Силой Жертвы.Прометей – про-мета. Мета - так называется цель, которая ставится всем существом и сердцем (см. ), а про - это приставка.

Устройство несущего основания

Из книги автора

Устройство несущего основания Небольшие размеры плиток мягкой черепицы обеспечивают легкий и практически безотходный монтаж. Легкость черепицы не требует усиленной конструкции стропильной системы, что позволяет не усиливать несущую конструкцию даже тогда, когда речь

Общие положения.

Несущий винт вертолета (НВ) предназначен для создания подъемной силы, движущей (пропульсивной) силы и управляющих моментов.

Несущий винт состоит из втулки, лопастей, которые крепятся к втулке с помощью шарниров или упругих элементов.

Лопасти несущего винта, благодаря наличию на втулке трех шарниров (горизонтального, вертикального и осевого), совершают в полете сложное движение: - вращаются вокруг оси НВ, перемещаются вместе с вертолетом в пространстве, изменяют свое угловое положение, поворачиваясь в указанных шарнирах, поэтому аэродинамика лопасти несущего винта сложнее аэродинамики крыла самолета.

Характер обтекания НВ зависит от режимов полета.

Основные геометрические параметры несущего винта (НВ).

Основными параметрами НВ являются диаметр, ометаемая площадь, число лопастей, коэффициент заполнения, разнос горизонтального и вертикального шарниров, удельная нагрузка на ометаемую площадь.

Диаметр D – диаметр окружности по которой движутся концы лопастей при работе НВ на месте. У современных вертолетов диаметр составляет 14-35 м.

Ометаемая площадь Fом – площадь круга, который описывают концы лопастей НВ при его работе на месте.

Коэффициент заполнения σ.равен:

σ = (Z л F л) / F ом (12.1);

где Z л – количество лопастей;

F л – площадь лопасти;

F ом – ометаемая площадь НВ.

Характеризует степень заполнения лопастями ометаемой площади, изменяется в пределах s=0,04¸0,12.

При увеличении коэффициента заполнения тяга НВ растет до определенного значения, в связи с увеличением реальной площади несущих поверхностей, затем падает. Падение тяги происходит из-за влияния скоса потока и вихревого следа от идущей впереди лопасти. При увеличении s, необходимо увеличить и мощность, подводимую к НВ из-за увеличения лобового сопротивления лопастей. При увеличении s уменьшается шаг, необходимый для получения заданной тяги, что отдаляет НВ от срывных режимов. Характеристика срывных режимов и причины их возникновения будут рассмотрены далее.

Разнос горизонтального l г и вертикального l в шарниров – расстояние от оси шарнира до оси вращения НВ. Может рассматриваться в относительных величинах (12.2.)

Находится в пределах . Наличие разноса шарниров улучшает эффективность продольно-поперечного управления.

определяется как отношение веса вертолета к площади ометаемого НВ.

(12.3.)

Основные кинематические параметры НВ.

К основным кинематическим параметрам НВ относятся частота или угловая скорость вращения, угол атаки НВ, углы общего или циклического шага.

Частота вращения n с - число оборотов НВ в секунду; угловая скорость вращения НВ - определяет его окружную скорость w R .

Величина w R на современных вертолетах равна 180¸220 м/сек.

Угол атаки НВ (А) измеряется между вектором скорости набегающего потока и с
Рис. 12.1 Углы атаки несущего винта и режимы его работы.

плоскостью вращения НВ (рис.12.1). Угол А считается положительным, если воздушный поток набегает на НВ с низу. На режимах горизонтального полёта и набора высоты А -отрицательный, на снижении А- положительный.. Различают два режима работы НВ – режим осевого обтекания, когда А=±90 0 (висение, вертикальный набор или снижение) и режим косой обдувки, когда А¹±90 0 .

Угол общего шага – угол установки всех лопастей НВ в сечении на радиусе 0,7R.

Угол циклического шага НВ зависит от режима работы НВ, подробно этот вопрос рассматривается при анализе косой обдувки НВ.

Основные параметры лопасти НВ.

К основным геометрическим параметрам лопасти относятся радиус, хорда, угол установки, форма профиля сечений, геометрическая крутка и форма лопасти в плане.

Текущий радиус сечения лопасти r определяет его расстояние от оси вращения НВ. Относительный радиус определяется

(12.4);

Хорда профиля – прямая соединяющая наиболее удаленные точки профиля сечения, обозначается b (рис. 12.2).

Рис. 12.2. Параметры профиля лопасти. Угол установки лопасти j - угол между хордой сечения лопасти и плоскостью вращения НВ.

Угол установки j на `r=0,7 при нейтральном положении органов управления и отсутствии махового движения считается углом установки всей лопасти и общим шагом НВ.

Профиль сечения лопасти представляет собой форму сечения плоскостью, перпендикулярной к продольной оси лопасти, характеризуется максимальной толщиной с max , относительной толщиной вогнутостью f и кривизной . На несущих винтах применяют, как правило, двояковыпуклые, несимметричные профили с небольшой кривизной.

Геометрическая крутка производится уменьшением углов установки сечений от комля до конца лопасти и служит для улучшения аэродинамических характеристик лопасти.. Лопасти вертолетов имеют прямоугольную форму в плане, которая в аэродинамическом смысле не оптимальна, но проще с точки зрения технологии.

Кинематические параметры лопасти определяются углами азимутального положения, взмаха, качания и углом атаки.

Угол азимутального положения y определяется по направлению вращения НВ между продольной осью лопасти в данный момент времени и продольной осью нулевого положения лопасти. Линия нулевого положения в горизонтальном полете практически совпадает с продольной осью хвостовой балки вертолета.

Угол взмаха b определяет угловое перемещение лопасти в горизонтальном шарнире относительно плоскости вращения. Считается положительным при отклонении лопасти вверх.

Угол качания x характеризует угловое перемещение лопасти в вертикальном шарнире в плоскости вращения (рис.12.). Считается положительным при отклонении лопасти против направления вращения.

Угол атаки элемента лопасти a определяется углом между хордой элемента и набегающим потоком.

Лобовое сопротивление лопасти.

Лобовым сопротивлением лопасти называется аэродинамическая сила, действующая в плоскости вращения втулки и направленная против вращения НВ.

Лобовое сопротивление лопасти состоит из профильного, индуктивного и волнового сопротивлений.

Профильное сопротивление, вызывается двумя причинами: разностью давления перед лопастью и за ней (сопротивление давления) и трением частиц в пограничном слое (сопротивление трения).

Сопротивление давления зависит от формы профиля лопасти т.е. от относительной толщины () и относительной кривизны () профиля. Чем больше и тем больше сопротивление. Сопротивление давления не зависит от угла атаки на эксплуатационных режимах, но возрастает на критических a.

Сопротивление трения зависит от частоты вращения НВ и состояния поверхности лопастей. Индуктивное сопротивление – это сопротивление, вызванное наклоном истинной подъемной силы вследствие скоса потока. Индуктивное сопротивление лопасти зависит от угла атаки α и возрастает с его увеличением. Волновое сопротивление возникает на наступающей лопасти при превышении скорости полёта выше расчетной и появлении на лопасти скачков уплотнения.

Лобовое сопротивление, как и сила тяги, зависит от плотности воздуха.

Импульсная теория создания тяги несущего винта.

Физическая сущность импульсной теории заключается в следующем. Работающий идеальный винт отбрасывает воздух, предавая его частицам определенную скорость. Перед винтом образуется зона подсасывания, за винтом – зона отбрасывания и устанавливается воздушный поток через винт. Основные параметры этого воздушного потока: индуктивная скорость и прирост давления воздуха в плоскости вращения винта.

На режиме осевого обтекания воздух подходит к НВ со всех сторон, а за винтом образуется сужающая воздушная струя. На рис. 12.4. изображена достаточно большая сфера с центром на втулке НВ с тремя характерными сечениями: сечение 0, расположенное далеко перед винтом, в плоскости вращения винта сечение 1 со скоростью потока V 1 (скорость подсасывания) и сечение 2 со скоростью потока V 2 (скорость отбрасывания).

Поток воздуха отбрасывается НВ с силой Т, но и воздух давит на винт с этой же силой. Эта сила и будет силой тяги несущего винта. Сила равна произведению массы тела на
Рис. 12.3. К объяснению импульсной теории создания тяги.

ускорение, которое тело получило под действием этой силы. Следовательно, тяга НВ будет равна

(12.5.)

где m s – секундная масса воздуха, проходящая через площадь НВ равная

(12.6.)

где - плотность воздуха;

F - площадь, отметаемая винтом;

V 1 - индуктивная скорость потока (скорость подсасывания);

а – ускорение в потоке.

Формулу (12.5.) можно представить в другом виде

(12.7.)

так как по теории идеального винта скорость отбрасывания воздуха V винтом в два раза больше скорости подсасывания V 1 в плоскости вращения НВ.

(12.8.)

Практически удвоение индуктивной скорости происходит на расстоянии равном радиусу НВ. Скорость подсасывания V 1 у вертолетов Ми-8 равна 12м/с, у Ми-2 – 10м/с.

Вывод: Сила тяги несущего винта пропорциональна плотности воздуха, ометаемой площади НВ и индуктивной скорости (частоте вращения НВ).

Перепад давления в сечении 1-2 по отношению к атмосферному давлению в невозмущенной воздушной среде равен трем скоростным напорам индуктивной скорости

(12.9.)

что вызывает увеличение сопротивления элементов конструкции вертолета, находящимися за НВ.

Теория элемента лопасти.

Сущность теории элемента лопасти заключается в следующем. Рассматривается обтекание каждого малого участка элемента лопасти, и определяются элементарные аэродинамические силы dу э и dх э действующие на лопасть. Подъемная сила лопасти У л и сопротивление лопасти Х л определяются в результате сложения таких элементарных сил, действующих по всей длине лопасти от ее комлевого сечения (r к) до концевого (R):

Аэродинамические силы действующие на несущий винт определяются как сумма сил действующих на все лопасти.

Для определения тяги несущего винта пользуются формулой аналогичной формуле подъемной силы крыла.

(12.10.)

Согласно теории элемента лопасти, сила тяги развиваемая несущим винтом, пропорциональна коэффициенту тяги, ометаемой площади НВ, плотности воздуха и квадрату окружной скорости конца лопастей.

Выводы сделанные по импульсной теории и по теории элемента лопасти взаимно дополняют друг друга.

На основании этих выводов следует, что сила тяги НВ в режиме осевого обтекания зависит от плотности воздуха (температуры), установочного угла лопастей (шага НВ) и частоты вращения несущего винта.

Режимы работы НВ.

Режим работы несущего винта определяется положением НВ в потоке воздуха.(рис.12.1) В зависимости от этого определяют два основных режима работы: режим осевого и косого обтекания. Режим осевого обтекания характеризуется тем, что набегающий невозмущённый поток двигается параллельно оси втулки НВ (перпендикулярно плоскости вращения втулки НВ). В этом режиме несущий винт работает на вертикальных режимах полёта: висение, вертикальный набор высоты и снижение вертолёта. Основной особенностью этого режима является то, что положение лопасти относительно потока, набегающего на винт, не меняется, следовательно, не меняются аэродинамические силы при движении лопасти по азимуту. Режим косого обтекания характеризуется тем, что воздушный поток набегает на НВ под углом к его оси (рис12.4.). Воздух подходит к винту со скоростью V и отклоняется вниз за счет индуктивной скорости подсасывания Vi. Результирующая скорость потока через НВ будет равна векторной сумме скоростей невозмущенного потока и индуктивной скорости

V1 = V + Vi (12.11.)

В результате этого увеличивается секундный расход воздуха протекающий через НВ, а следовательно, и тяга несущего винта, которая увеличивается с ростом скорости полета. Практически рост тяги НВ наблюдается при скорости свыше 40 км/ч.

Рис. 12.4. Работа несущего винта на режиме косой обдувки.

Косая обдувка. Эффективная скорость обтекания элемента лопасти в плоскости вращения НВ и ее изменение по ометаемой поверхности НВ.

На режиме осевого обтекания каждый элемент лопасти находится в потоке, скорость которого равна окружной скорости элемента , где радиус данного элемента лопасти (Рис.12.6).

На режиме косого обтекания при угле атаки НВ не равном нулю (А=0) результирующая скорость W, с которой поток обтекает элемент лопасти, зависит от окружной скорости элемента u, скорости полета V1 и угла азимута .

W = u +V1 sinψ (12.12.)

т.е. при неизменной скорости полета и постоянной частоте вращения НВ (ωr = const.) эффективная скорость обтекания лопасти будет меняться в зависимости от угла азимута.

Рис.12.5. Изменение скорости обтекания лопасти в плоскости вращения ВВ.

Изменение эффективной скорости обтекания по ометаемой поверхности НВ.

На рис. 12.6. показаны векторы скоростей потока, который набегает на элемент лопасти в результате сложения окружной скорости и скорости полета. На схеме видно, что эффективная скорость обтекания изменяется как вдоль лопасти, так и по азимуту. Окружная скорость растёт от нуля у оси втулки винта до максимальной на концах лопастей. В азимуте 90 о скорость элементов лопасти равна , на азимуте 270 о результирующая скорость равна , у комля лопасти в зоне с диаметром d поток набегает со стороны ребра обтекания, т.е. образуется зона обратного обтекания, зона, которая не участвует в создании тяги.

Диаметр зоны обратного обтекания тем больше, чем больше радиус НВ и чем больше скорость полета при неизменной частоте вращения НВ.

На азимутах y=0 и y=180 0 результирующая скорость элементов лопасти равна .

Рис.12.6. Изменение эффективной скорости обтекания по ометаемой поверхности ВВ.

Косая обдувка. Аэродинамические силы элемента лопасти.

При нахождении элемента лопасти в потоке возникает полная аэродинамическая сила элемента лопасти , которая может быть разложена в скоростной системе координат на подъемную силу и силу лобового сопротивления .

Величина элементарной аэродинамической силы определяется по формуле:

Rr = CR(ρW²r/2)Sr (12.13.)

Просуммировав элементарные силы тяги и силы сопротивления вращению, можно определить величину силы тяги и сопротивления вращению всей лопасти.

Точка приложения аэродинамических сил лопасти является центром давления, который находится на пересечении полной аэродинамической силы с хордой лопасти.

Величина аэродинамической силы определяется углом атаки элемента лопасти , который представляет собой угол между хордой элемента лопасти и набегающим потоком (Рис.12.7).

Угол установки элемента лопасти φ есть угол между конструктивной плоскостью несущего винта (КПВ) и хордой элемента лопасти.

Угол притекания есть угол между скоростями и .(Рис.12.7.)

Рис.12.7.Аэродинамические силы элемента лопасти при косой обдувке.

Возникновение опрокидывающего момента при жестком креплении лопастей. Силы тяги создаются всеми элементами лопасти, но наибольшие элементарные силы Т л будут у элементов, расположенных на ¾ радиуса лопасти, величина равнодействующей Т л на режиме косого обтекания тяги лопасти зависит от азимута. На ψ = 90 она максимальна, на ψ = 270 минимальна. Такое распределение элементарных сил тяги и расположение равнодействующей силы приводит к образованию большого переменного изгибающего момента у корня лопасти M изг.

Этот момент создает большую нагрузку в месте крепления лопасти, что может привести к её разрушению. В результате неравенства тяг Т л1 и Т л2 возникает опрокидывающий момент вертолета,

М х =Т л1 r 1 -T л2 r 2, (12.14.)

который возрастает с увеличением скорости полета вертолета.

Винт с жестким креплением лопастей имеет следующие недостатки (Рис 12.8):

Наличие опрокидывающего момента на режиме косого обтекания;

Наличие большого изгибающего момента в месте крепления лопасти;

Изменение момента тяги лопасти по азимуту.

Эти недостатки устраняются путем крепления лопасти к втулке с помощью горизонтальных шарниров.

Рис.12.8 Возникновение опрокидывающего момента при жестком креплении лопастей.

Выравнивание момента силы тяги в различных азимутальных положениях лопасти.

При наличии горизонтального шарнира тяга лопасти образует относительно этого шарнира момент, который поворачивает лопасть (рис.12. 9). Момент тяги Т л1 (Т л2) вызывает поворот лопасти относительного этого шарнира

или (12.15.)

поэтому момент не передается на втулку, т.е. устраняется опрокидывающий момент вертолета. Изгибающий момент Muзг. у корня лопасти становится равным нулю, разгружается ее корневая часть, уменьшается изгиб лопасти, за счет этого уменьшаются усталостные напряжения. Вибрации, вызванные изменением тяги по азимуту, уменьшаются. Таким образом, горизонтальный шарнир (ГШ) выполняет следующие функции:

Устраняет опрокидывающий момент на режиме косой обдувки;

Разгружает корневую часть лопасти от M изг;

Упрощают управление несущим винтом;

Улучшают статическую устойчивость вертолета;

Уменьшают величину изменения тяги лопасти по азимуту.

Уменьшает усталостные напряжения в лопасти, и уменьшают ее вибрацию, из-за изменения силы тяги по азимуту;

Изменение углов атаки элемента лопасти за счет взмаха.

При движении лопасти в режиме косой обдувки в азимуте ψ от 0 до 90 о скорость обтекания лопасти постоянно увеличивается за счет составляющей скорости горизонтального полета (при малых углах атаки НВ ) (рис.12. 10.)

т.е. . (12.16.)

Соответственно увеличивается сила тяги лопасти, которая пропорциональная квадрату скорости набегающего потока и момент тяги этой лопасти относительно горизонтального шарнира. Лопасть взмахивает вверх,
Рис12.9 Выравнивания момента силы тяги в различных азимутальных положениях лопасти.

сечение лопасти дополнительно обдуваются сверху (рис. 12.10), а это вызывает уменьшение истинных углов атаки и уменьшение подъёмной силы лопасти, что приводит к аэродинамической компенсации взмаха. При движении от ψ 90 до ψ 180 скорость обтекания лопастей уменьшается, углы атаки увеличиваются. На азимуте ψ = 180 о и на ψ = 0 о скорости обтекания лопасти одинаковы и равны ωr.

К азимуту ψ = 270 о лопасть начинает опускаться в связи с уменьшением скорости обтекания и уменьшением Т л, при этом лопасти дополнительно обдуваются снизу, что вызывает увеличение углов атаки элемента лопасти, а значит и некоторый прирост подъёмной силы.

На ψ = 270 скорость обтекания лопасти минимальна, мах Vy лопасти вниз максимальный, углы атаки на концах лопастей близки к критическим. Вследствие различия скорости обтекания лопасти на различных азимутах, углы атаки на ψ = 270 о возрастают в несколько раз больше, чем уменьшаются при ψ = 90 о. Поэтому при увеличении скорости полета вертолета, в районе азимута ψ = 270 о углы атаки могут превышать критические значения, что вызывает срыв потока с элементов лопасти.

Косое обтекание приводит к тому, что углы взмаха лопастей в передней части диска НВ в районе азимута 180 0 значительно больше, чем в задней части диска в районе азимута 0 0 . Этот наклон диска называется завалом конуса НВ. Изменение углов взмаха лопасти по азимуту на свободном НВ, когда отсутствует регулятор взмаха, изменяются следующим образом:

азимут от 0 до 90 0:

Результирующая скорость обтекания лопасти растет, подъемная сила и ее момент увеличиваются;

Угол взмаха b и вертикальная скорость V у увеличиваются;

азимут 90 0:

Скорость взмаха вверх V у максимальная;

азимут 90 0 – 180 0:

Подъемная сила лопасти уменьшается за счет уменьшения результирующей скорости обтекания;

Скорость взмаха V у вверх уменьшается, но угол взмаха лопасти продолжает увеличиваться.

азимут 200 0 – 210 0:

Вертикальная скорость взмаха равна нулю V у = 0, угол взмаха лопасти b - максимальный, лопасть, в результате уменьшения подъёмной силы, идёт вниз;

азимут 270 0:

Скорость обтекания лопасти минимальная, подъемная сила и ее момент уменьшаются;

Скорость маха вниз V у – максимальная;

Угол взмаха b уменьшается.

азимут 20 0 – 30 0:

Скорость обтекания лопасти начинает увеличиваться;

V у = 0, угол взмаха вниз – максимальный.

Таким образом, у свободного НВ правого вращения при косой обдувке конус заваливается назад влево. С ростом скорости полёта завал конуса увеличивается.

Рис.12.10.Изменение углов атаки элемента лопасти за счет взмаха.

Регулятор взмаха (РВ). Маховое движение приводит к росту динамических нагрузок на конструкцию лопасти и неблагоприятному изменению углов атаки лопастей по диску несущего винта. Уменьшение амплитуды взмаха и изменение естественного наклона конуса НВ с левого на правое производится регулятором взмаха. Регулятором взмаха (рис.12.11.) является кинематическая связь между осевым шарниром и вращающимся кольцом автомата перекоса, обеспечивающая уменьшение углов установки лопастей j при уменьшении угла взмаха b и наоборот, увеличение угла установки лопастей при увеличении угла взмаха. Эта связь заключается в смещении точки крепления тяги от автомата перекоса к поводку осевого шарнира (точка А) (рис.12.12) с оси горизонтального шарнира. На вертолетах типа Ми регулятор взмаха заваливает конус НВ назад и вправо. В этом случае боковая составляющая по оси Z от результирующей силы НВ направлена вправо против направления тяги рулевого винта, что улучшает условия боковой балансировки вертолета.

Рис.12.11 Регулятор взмаха, Кинематическая схема. . . Равновесие лопасти относительно горизонтального шарнира.

При маховом движении лопасти (рис.12.12.) в плоскости силы тяги на нее действуют следующие силы и моменты:

Тяга Т л, приложена на ¾ длины лопасти, образует момент М т =Т·а, поворачивающий лопасть на увеличение взмаха;

Центробежная сила F цб действующая перпендикулярно конструктивного оси вращения НВ во внешнюю сторону. Сила инерции от взмаха лопасти, направленная перпендикулярно оси лопасти и противоположна ускорению взмаха;

Сила тяжести G л приложена к центру тяжести лопасти и образует момент М G =G·в поворачивающий лопасть на уменьшение взмаха.

Лопасть занимает положение в пространстве вдоль результирующей силы Rл. Условия равновесия лопасти относительно горизонтального шарнира определяется выражением

(12.17.)

Рис.12.12. Силы и моменты, действующие на лопасть в плоскости взмаха.

Лопасти НВ движутся по образующей конуса, вершина которого расположена в центре втулки, а ось перпендикулярна к плоскости концов лопастей.

Каждая лопасть занимает на определенном азимуте Ψ одинаковые угловые положения β л относительно плоскости вращения НВ.

Маховое движение лопастей является циклическим, строго повторяющимся с периодом равным времени одного оборота НВ.

Момент горизонтальных шарниров втулки НВ (М гш).

На режиме осевого обтекания НВ равнодействующая сил лопастей R н направлена вдоль оси НВ и приложена в центре втулки. На режиме косой обдувки сила R н отклоняется в сторону завала конуса. Из-за разноса горизонтальных шарниров аэродинамическая сила R н не проходит через центр втулки и между вектором силы R н и центром втулки образуется плечо. Возникает момент М гш, называемый инерционным моментом горизонтальных шарниров втулки НВ. Он зависит от разноса l r горизонтальных шарниров. Момент горизонтальных шарниров втулки НВ М гш увеличивается с увеличением расстояния l r и направлен в сторону завала конуса НВ.

Наличие разноса горизонтальных шарниров улучшает демпфирующее свойство НВ, т.е. улучшает динамическую устойчивость вертолета.

Равновесие лопасти относительно вертикального шарнира (ВШ).

Во время вращения НВ лопасть отклоняется на угол x. Угол качания x измеряется между радиальной линией и продольной осью лопасти в плоскости вращения НВ и будет положительным, если лопасть поворачивается относительно радиальной линии назад (отстает) (рис. 12.13.).

В среднем угол качания равен 5-10 о, а на режиме самовращения он отрицателен и равен 8-12 о в плоскости вращения НВ. На лопасть действуют следующие силы:

Сила лобового сопротивления Х л, приложена в центре давления;

Центробежная сила, направленная по прямой соединяющей центр массы лопасти и ось вращения НВ;

Инерционная сила F ин, направленная перпендикулярно оси лопасти и противоположно ускорению, приложена в центре масс лопасти;

Знакопеременные силы Кориолиса F к, приложенные в центре масс лопасти.

Возникновение силы Кориолиса объясняется законом сохранения энергии.

Энергия вращения зависит от радиуса,если радиус уменьшился, то часть энергии используется на увеличение угловой скорости вращения.

Поэтому, когда происходит взмах лопасти вверх, уменьшаются радиус r ц2 центра масс лопасти и окружная скорость, появляется кориолисово ускорение, стремящиеся ускорить вращение, а значит и сила - сила Кориолиса, которая поворачивает лопасть вперёд относительно вертикального шарнира. При уменьшении угла взмаха кориолисово ускорение,а значит,и сила будет направлена против вращения. Сила Кориолиса прямо пропорциональна весу лопасти, частоте вращения НВ, угловой скорости взмаха и углу взмаха

Выше перечисленные силы образуют моменты, которые на каждом азимуте похождения лопасти должны быть уравновешены

. (12.15.)

Рис.12.13.. Равновесие лопасти относительно вертикального шарнира (ВШ).

Возникновение моментов на НВ.

При работе НВ возникают следующие моменты:

Крутящий момент М к, создается силами аэродинамического сопротивления лопастей, определяется параметрами НВ;

Реактивный момент М р, приложен к главному редуктору и через раму редуктора на фюзеляже.;

Крутящий момент двигателей, передаваемый через главный редуктор на вал НВ, определяется крутящим моментом двигателей.

Крутящий момент двигателей направлен по вращению НВ, а реактивный и крутящий момент НВ – против вращения. Крутящий момент двигателя определяется расходом топлива, программой автоматического регулирования, внешними атмосферными условиями.

На установившихся режимах полета М к = М р = - М дв.

Крутящий момент НВ иногда отождествляют с реактивным моментом НВ или с крутящим моментом двигателей, но как видно из выше приведенного физическая сущность этих моментов различна.

Критические зоны обтекания НВ.

При косой обдувке на НВ, образуются следующие критические зоны (рис. 12.14.):

Зона обратного обтекания;

Зона срыва потока;

Зона волнового кризиса;

Зона обратного обтекания . В районе азимута 270 0 в горизонтальном полете образуется зона, в которой комлевые сечения лопастей обтекаются не с передней, а с задней кромки лопасти. Участок лопасти находящийся в этой зоне в создании подъемной силы лопасти не участвует. Эта зона зависит от скорости полёта, чем больше скорость полета, тем больше зона обратного обтекания.

Зона срыва потока. В полете на азимуте 270 0 – 300 0 на концах лопастей за счет маха лопасти вниз увеличиваются углы атаки сечения лопасти. Этот эффект усиливается при увеличении скорости полета вертолета, т.к. при этом возрастают скорость и амплитуда махового движения лопастей. При значительном увеличении шага НВ или увеличении скорости полета, в этой зоне происходит срыв потока (рис. 12.14.) за счёт выхода лопастей на закритические углы атаки, что приводит к уменьшению подъёмной силы и увеличению лобового сопротивления лопастей, находящихся в этой зоне. Тяга несущего винта в этом секторе падает и при большом превышении скорости полёта на НВ появляется значительный кренящий момент.

Зона волнового кризиса. Волновое сопротивление на лопасти возникает в районе азимута 90 0 на большой скорости полета, когда скорость обтекания лопасти достигает местной скорости звука, и образуются местные скачки уплотнения, что вызывает резкое увеличение коэффициента С хо за счет возникновения волнового сопротивления

С хо =С хтр +С хв. (12.18.)

Волновое сопротивление может в несколько раз превосходить сопротивление трения, а т.к. скачки уплотнения на каждой лопасти появляются циклически и на небольшой промежуток времени, то это вызывает вибрацию лопасти, которая увеличивается с ростом скорости полета. Критические зоны обтекания несущего винта уменьшают эффективную площадь несущего винта, а значит и тягу НВ, ухудшают аэродинамические и эксплутационные характеристики вертолёта в целом, поэтому ограничения полётов вертолётов по скорости связаны с рассмотренными явлениями.

.«Вихревое кольцо».

Режим вихревого кольца возникает при малой горизонтальной скорости и большой вертикальной скорости снижения вертолета при работающих двигателях вертолета.

При снижении вертолёта в таком режиме, на некотором расстоянии под НВ образуется поверхность а-а, где индуктивная скорость отбрасывания становится равной скорости снижения V y (рис.12.15). Достигая этой поверхности, индуктивный поток поворачивается навстречу НВ, частично им захватывается и снова отбрасывается вниз. При увеличении V y , поверхность а-а приближается к НВ, и при некоторой критической скорости снижения почти весь отбрасываемый воздух снова подсасывается несущим винтом, образуя вокруг винта вихревой тор. Наступает режим вихревого кольца.

Рис12.14. Критические зоны обтекания НВ.

В этом случае общая тяга НВ уменьшается, вертикальная скорость снижения V y возрастает. Поверхность раздела а-а периодически разрывается, вихри тора резко изменяют распределение аэродинамической нагрузки и характер махового движения лопастей. В результате тяга НВ становится пульсирующей, возникает тряска и броски вертолета, ухудшается эффективность управления, указатель скорости и вариометр дают неустойчивые показания.

Чем меньше установочный угол лопастей и скорость горизонтального полета, больше вертикальная скорость снижения тем интенсивнее проявляется режим вихревого кольца. снижения на скоростях полета от 40 км/час и менее.

Для предотвращения попадание вертолета в режим «вихревого кольца» необходимо выполнять требования РЛЭ по ограничению вертикальной скорости

Можно без преувеличения сказать, что главное в планёре-автожире -это несущий винт. От правильности его профиля, от массы, точности центровки и прочности зависят лётные качества автожира. Правда, безмоторный аппарат на буксире за автомобилем поднимается всего на 20 – 30 м. Но и полёт на такой высоте требует обязательного соблюдения всех ранее высказанных условий.

Лопасть (рис. 1) состоит из главного, воспринимающего все нагрузки элемента – лонжерона, нервюр (рис. 2), промежутки между которыми заполнены пластинами из пенопласта, и задней кромки, изготовляемой из прямослойной сосновой рейки. Все эти части лопасти склеиваются синтетической смолой и после надлежащего профилирования оклеиваются стеклотканью для придания дополнительной прочности и герметичности.

Материалы для лопасти: авиационная фанера толщиной 1 мм, стеклоткань толщиной 0,3 и 0,1 мм, эпоксидная смола ЭД-5 и пенопласт ПС-1. Смола пластифицируется дибутилфталатом в количестве 10 – 15%. Отвердителем служит полиэтиленполиамин (10%).

Изготовление лонжерона, сборка лопастей и их последующая обработка производятся на стапеле, который должен быть достаточно жёстким и иметь прямолинейную горизонтальную поверхность, а также одну из вертикальных кромок (их прямолинейность обеспечивается строжкой под линейку типа лекальной, не менее 1 м длиной).

Стапель (рис. 3) делают из сухих досок. К вертикальной продольной кромке (прямолинейность которой обеспечена) на время сборки и склейки лонжерона крепятся винтами металлические установочные пластинки на расстоянии 400 – 500 мм друг от друга. Верхний край их должен возвышаться над горизонтальной поверхностью на 22 - 22,5 мм.

1 – лонжерон (фанера, склеенная со стеклотканью); 2 – накладка (дуб или ясень); 3 – задняя кромка (сосна или липа); 4 – планка (сосна или липа); 5 – заполнитель (пенопласт); 6 – обшивка (2 слоя стеклоткани s0,1); 7 – триммер (дюралюминий марки Д-16М s,2 шт.); 8 – нервюра (фанера s2, слой вдоль)

Для каждой лопасти следует заготовить 17 полос фанеры, раскроенных по чертежу лонжерона наружным слоем вдоль, с припусками на обработку по 2 – 4 мм на сторону. Поскольку размеры листа фанеры 1500 мм, в каждом слое неизбежна склейка полос на ус не менее чем 1:10, а стыки в одном слоедолжны отстоять от стыков в другом, следующем за ним на расстоянии 100 мм. Отрезки фанеры располагаются так, что первые стыки нижнего и верхнего слоёв отстоят от комлевого торца лонжерона на 1500 мм, второго и предпоследнего слоёв – на 1400 мм и т. д., а стык среднего слоя будет на расстоянии 700 мм от торца комлевой части лопасти. Соответственно будут распределяться вдоль лонжерона вторые и третьи стыки заготовляемых полос.

Кроме того, нужно иметь 16 полос стеклоткани толщиной 0,3 мм и размерами 95×3120 мм каждая. Предварительно они должны подвергнуться обработке для удаления замасливателя.

Склеивать лопасти нужно в сухом помещении при температуре 18 – 20°С.

ИЗГОТОВЛЕНИЕ ЛОНЖЕРОНА

Перед сборкой заготовок стапель выстилается калькой, чтобы к нему не прилипали заготовки. Затем укладывается и выравнивается относительно установочных пластин первый слой фанеры. Его прикрепляют к стапелю тонкими и короткими гвоздями (4-5 мм), которые вбивают у комля и у конца лопасти, а также по одному с каждой стороны стыков для предотвращения смещения отрезков фанеры по смоле и стеклоткани в процессе сборки. Поскольку они останутся в слоях, их вколачивают вразброс. Гвозди вбивают указанным порядком и для закрепления всех последующих слоёв. Они должны быть из достаточно мягкого металла, чтобы не повреждать режущие кромки инструмента, употребляемого для дальнейшей обработки лонжерона.

Слои фанеры обильно смачивают при помощи ролика или кисти смолой ЭД-5. Затем последовательно накладывают на фанеру полосу стеклоткани, которую разглаживают рукой и деревянной гладилкой, пока на её поверхности не покажется смола. После этого на ткань кладут слой фанеры, у которого сначала смазывают смолой ту сторону, которая ляжет на стеклоткань. Набранный таким образом лонжерон покрывают калькой, укладывают на него рейку размерами 3100x90x40 мм. Между рейкой и стапелем струбцинами, расположенными на расстоянии 250 мм друг от друга, по всей длине рейки производят обжатие набранного пакета, пока его толщина не сравняется с верхними кромками установочных пластин. Излишки смолы надо удалить до её затвердения.

Заготовка лонжерона снимается со стапеля через 2-3 суток и обрабатывается до ширины 70 мм в профильной части, 90 мм – в комлевой, а также длины между торцами – 3100 мм. Необходимое требование, которое следует соблюсти на этом этапе, – обеспечение прямолинейности поверхности лонжерона, образующей в процессе дальнейшего профилирования переднюю кромку лопасти. Поверхность, к которой будут приклеиваться нервюры и заполнитель из пенопласта, должна быть также достаточно прямолинейной. Обрабатывать её следует рубанком и обязательно с ножом из твёрдых сплавов или в крайнем случае драчёвыми напильниками. Все четыре продольные поверхности заготовки лонжерона должны быть взаимно перпендикулярными.

ПРЕДВАРИТЕЛЬНОЕ ПРОФИЛИРОВАНИЕ

Разметку заготовки лонжерона производят так. Её кладут на стапель и на концевом торце, передней и задней плоскостях наносят линии, отстоящие от поверхности стапеля на расстоянии 8 мм (~Ун мах). На концевом торце, кроме того, вычерчивают с помощью шаблона (рис. 4) полный профиль лопасти в масштабе 1:1. Особой точности при изготовлении этого вспомогательного шаблона не требуется. С наружной стороны шаблона наносят линию хорды и на ней у носка профиля и в точке на расстоянии 65 мм от него сверлят два отверстия диаметром 6 мм. Глядя сквозь отверстия, совмещают линию хорды шаблона с линией, проведённой на концевом торце лонжерона, чтобы нанести на нём линию, определяющую границу профилирования. Во избежание сдвигов шаблон крепится к торцу тонкими гвоздями, под которые в нём сверлятся произвольно расположенные по их диаметру отверстия.

Обработку лонжеронов по профилю производят простым рубанком (грубая) и плоским драчёвым напильником. В продольном направлении её контролируют линейкой. Завершив обработку, приклеивают нервюры к задней поверхности лонжерона. Точность их установки обеспечивается тем, что на них в ходе изготовления наносят линию хорды, которая совмещается с линией хорды, нанесённой на задней плоскости заготовки лонжерона, а также визуальной проверкой прямолинейности их расположения относительно вспомогательного шаблона. Его снова крепят для этой цели к концевому торцу. Нервюры располагают на расстоянии 250 мм друг от друга, причём первая выставляется в самом начале профиля лонжерона или на расстоянии 650 мм от торца комлевой его части.

СБОРКА И ОБРАБОТКА ЛОПАСТИ

После затвердения смолы между нервюрами вклеиваются пластины пенопласта, соответствующие профилю задней части лопасти, по выступающим концам нервюр делают пропилы в рейке образующей заднюю кромку. Последнюю приклеивают на

смоле к нервюрам и пластинам из пенопласта.

Далее производят черновую обработку пенопластовых пластин, кривизна которых подгоняется под кривизну нервюр, а также удаляют излишек древесины с рейки для образования задней кромки с некоторым припуском для последующей точной обработки по основному шаблону (рис. 5).

Основой шаблон изготовляется вначале с припуском, 0,2 – 0,25 мм на указанные в шаблоне величины Ув и Ун, чтобы получить профиль меньшего, чем окончательный, размера под оклейку стеклотканью.

При обработке лопасти с помощью основного шаблона за базу берётся её нижняя поверхность. С этой целью выверяется лекальной линейкой прямолинейность её образующей на расстоянии Хн= 71,8 мм, где Ун= 8,1 мм. Прямолинейность можно считать достаточной в том случае, если в середине линейки длиной в 1 м имеется зазор не более 0,2 мм.

Затем к длинным сторонам хорошо отрихтованной дюралюминиевой пластины размерами 500x226x6 мм крепятся направляющие рейки из твёрдого дерева или дюралюминия высотой 8,1 мм. Расстояние между ними для верхней половины основного шаблона должно быть равно ширине лопасти, или 180 мм. Последнюю укладывают на стапеле на 3 – 4 подкладках, толщина которых равна толщине плиты приспособления, и прижимают струбцинами. Благодаря этому от-рихтованная пластина может передвигаться между стапелем и нижней поверхностью лопасти по всей длине в прямолинейной плоскости, чем обеспечивается постоянство толщины лопасти и соответствие её поверхности заданному профилю.

Верхнюю поверхность лопасти можно считать обработанной, если верхняя половина шаблона перемещается по всей её длине без зазора по профилю и в местах соприкосновения шаблона с направляющими. Нижнюю поверхность лопасти проверяют полностью собранным шаблоном, обе половины которого жёстко соединены вместе. Верхнюю и нижнюю поверхности профилируют с помощью драчёвых напильников с грубой и средней насечкой, а впадины и неровности заделывают по шаблону шпаклёвкой из смолы ЭД-5, смешанной с древесной мукой, и снова опиливают по шаблону.

ОКЛЕЙКА ЛОПАСТИ

Следующей операцией является оклейка профильных и комлевых частей лопастей стеклотканью толщиной 0,1 мм в два слоя на смоле ЭД-5. Каждый слой представляет собой сплошную ленту стеклоткани, который накладывается своей серединой на переднюю кромку лопасти. Основное требование, которое необходимо соблюдать при этом, – излишки смолы после того, как ткань хорошо ею пропитается, должны быть тщательно выжаты с помощью деревянной гладилки в поперечном направлении от передней кромки к задней, чтобы под тканью не образовались воздушные пузыри. Ткань нигде не должна подворачиваться или морщиться во избежание ненужных утолщений.

Оклеив лопасти, их зачищают наждачной бумагой, а заднюю кромку доводят до толщины, близкой к окончательной. Проверяют также профиль носка лонжерона. Пока это делают с помощью основного шаблона с некоторыми припусками, как указывалось выше, чтобы убедиться в качественности профилирования верхней и нижней поверхностей.

Основной шаблон доводят до требуемого размера и с его помощью производят окончательную подгонку профиля с применением шпаклёвки, причём за основу опять берётся нижняя поверхность лопасти, для чего с помощью лекальной линейки снова проверяется прямолинейность её образующей на расстоянии Хн= 71,8 мм от носка. Убедившись в её прямолинейности, лопасть кладут на стапель нижней поверхностью вниз на подкладках высотой 42 мм (эта величина представляет собой округлённую разницу между высотой нижней половины шаблона и Ун= 8,1 мм). Одна из подкладок ложится под комлевую часть лопасти, которая в этом месте прижимается к стапелю струбциной, остальные вдоль лопасти на произвольных расстояниях друг от друга. После этого верхняя поверхность лопасти промывается ацетоном или растворителем и покрывается по всей длине тонким слоем шпаклёвки из смолы ЭД-5 и зубного порошка такой густоты, чтобы она легко распределялась на поверхности и не стекала по кривизне профиля (консистенция густой сметаны). Прочно скреплённый основной шаблон медленно и равномерно продвигается вдоль лопасти фаской вперёд по движению так, чтобы его кромка всё время опиралась на горизонтальную поверхность стапеля. Снимая излишнюю шпаклёвку на выпуклых местах профиля и оставляя нужное её количество во впадинах, шаблон обеспечивает таким образом доводку профиля. Если окажется, что впадины в некоторых местах не заполнились, то эта операция повторяется после нанесения на них более толстого слоя шпаклёвки. Излишняя шпаклёвка должна периодически удаляться, когда она начинает свисать с передней и задней кромок лопасти.

При выполнении этой операции важно перемещать шаблон без перекосов и перпендикулярно к продольной оси лопасти, двигая его безостановочно, чтобы избежать неровностей поверхности лопасти. Дав шпаклёвке достигнуть полной твёрдости и сгладив её слегка наждачной бумагой, операцию окончательной шпаклёвки повторяют на нижней поверхности, пользуясь подкладками высотой 37 мм.

ОТДЕЛКА ЛОПАСТЕЙ

Сделав лопасти, их обрабатывают наждачной бумагой средней зернистости, обращая особое внимание на формирование носка профиля, промывают ацетоном или растворителем и покрывают грунтом № 138, кроме места крепления триммера (рис. 6). Затем все неровности заделывают нитрошпаклёвкой, следя, чтобы на профилированных поверхностях не образовалось излишних утолщений.

Окончательные отделочные работы, состоящие в осторожном снятии водоупорной наждачной бумагой разной зернистости излишков шпаклёвки, проводят, сообразуясь с продвижением сомкнутого шаблона вдоль поверхностей лопасти без излишней качки и зазоров (не более 0,1 мм).

После оклейки лопастей стеклотканью толщиной 0,1 мм и до их покрытия грунтом на комлевую часть лопастей сверху и снизу на смоле ЭД-5 приклеивают пластины из дуба или ясеня размерами 400x90x6 мм, которые состругиваются так, чтобы лопасти приобрели установочный угол, заключённый между хордой и горизонтальной плоскостью и равный 3°. Его проверяют с помощью несложного шаблона (рис. 7) относительно передней поверхности комля, а также контролируя параллельность образующихся при этом поверхностей снизу и сверху комля.

На этом заканчивается формирование комля лопасти, и он обклеивается стеклотканью 0.3 мм на смоле ЭД-5 для придания лопасти герметичности. Готовая лопасть, кроме комля, окрашивается нитроэмалью и полируется.

Советы относительно определения фактического положения центра тяжести лопастей, их балансировки и сопряжения со втулкой читайте в следующих номерах журнала.

СБОРКА И РЕГУЛИРОВКА

В предыдущем номере журнала был подробно описан технологический процесс изготовления лопастей несущего винта автожира.

Следующим этапом является балансировка лопастей по хорде, сборка и балансировка несущего винта по радиусу лопастей. От точности установки последних зависит плавность работы несущего винта, в противном случае будут возникать повышенные нежелательные вибрации. Поэтому к сборке надо отнестись очень серьёзно – не спешить, не начинать работу, пока не будет подобран весь необходимый инструмент, приспособления и не подготовлено рабочее место. При балансировке и сборке надо постоянно контролировать свои действия – лучше семь раз отмерить, чем один раз упасть хотя бы с малой высоты.

Процесс балансировки лопастей по хорде в данном случае сводится к определению положения центра тяжести элемента лопасти.

Основная цель, вызывающая необходимость балансировки лопасти по хорде, – уменьшить тенденцию к возникновению колебаний флаттерного типа. Хотя у описываемой машины возникновение этих колебаний маловероятно, однако помнить о них нужно, и при регулировке следует приложить все усилия для того, чтобы ЦТ лопасти находился в пределах 20 – 24% хорды от носика профиля. Профиль лопасти NACA-23012 имеет очень малое перемещение центра давления (ЦД – точка приложения всех аэродинамических сил, действующих на лопасть в полёте), который находится в тех же пределах, что и ЦТ. Это позволяет совместить линии ЦТ и ЦД, что практически означает отсутствие пары сил, вызывающих закручивание лопасти несущего винта.

Предлагаемая конструкция лопасти обеспечивает требуемое положение ЦТ и ЦД при условии изготовления их строго по чертежу. Но даже при самом тщательном подборе материалов, соблюдении технологии весовое несоответствие может возникнуть, в связи с чем и выполняются балансировочные работы.

Определить (с некоторыми допустимыми погрешностями) положение ЦТ изготовленной лопасти можно, выполнив лопасти с припуском на концах 50- 100 мм. После окончательной опиловки припуск отрезается, на лопасть ставится законцовка, а отрезанный элемент подвергается балансировке.

1 – ограничитель углов (Д16Т); 2 – ось несущего винта (30ХГСА); 3 – нижняя пластина втулки (Д16Т, s6); 4 – ферма втулки (Д16Т); 5 – ось главного шарнира (30ХГСА); 6 – втулка (бронза оловянистая); 7 – шайба Ø20 – 10, 5 – 0,2 (сталь 45); 8 – корпус подшипников (Д16Т); 9 – отверстие под шплинт; 10 – крышка корпуса подшипн. (Д16Т); 11 – корончатая гайка М18; 12 – шайба Ø26 – 18, 5 – 2 (сталь 20); 13 - винт крепления крышки М4; 14 – радиально-упорный подшипник; 15 – радиально-сферический подшипник № 61204; 16 – болт крепления лопасти (30ХГСА); 17 – накладка лопасти (s3, 30ХГСА); 18 – шайба Ø14 – 10 – 1,5 (сталь 20); 19 – самоконтрящаяся гайка М10; 20 – винт М8; 21 – буж (Ø61, L = 200, Д16Т); 22 – пилон (труба Ø65×2, L=1375, липа)

На трёхгранную, горизонтально расположенную призму своей нижней поверхностью кладут элемент лопасти (рис. 1). Его плоскость сечения по хорде должна быть строго перпендикулярна ребру призмы. Передвижением элемента лопасти вдоль хорды добиваются его равновесия и замеряют расстояние на носке профиля до ребра призмы. Это расстояние должно составлять 20 – 24% от длины хорды. Если ЦТ выйдет за этот максимальный предел, на носик профиля в концевой части лопасти надо будет навесить противофлаттерный груз такого веса, чтобы ЦТ сместился вперёд на необходимую величину.

Комель лопасти усилен накладками, которые представляют собой стальные пластины толщиной 3 мм (рис. 2). Они крепятся к комлю лопасти пистонами диаметром 8 мм и заклёпками впотай на каком-либо клее: БФ-2, ПУ-2, ЭД-5 или ЭД-6. Перед установкой накладок комель лопасти зачищается грубой наждачной бумагой, а сама накладка обрабатывается пескоструйным аппаратом. Склеиваемые поверхности деталей, то есть комель лопасти, накладки, отверстия под пистоны и сами пистоны, обезжиривают и тщательно смазывают клеем. Затем расклёпывают пистоны и ставят заклёпки (по 4 штуки на каждую накладку). После этой операции лопасти готовы к разметке для установки их на втулку.

Несущий винт автожира (рис. 3) состоит из двух лопастей, втулки, оси винта с подшипниками качения, корпуса подшипников горизонтального шарнира и ограничителя углов отклонения оси несущего винта.

Втулка состоит из двух деталей: П-образной фермы и нижней пластины (рис. 4). Ферму желательно делать из поковки. При изготовлении её из проката надо обратить особое внимание на то, чтобы направление проката было обязательно параллельно продольной оси фермы. Такое же направпение проката должно быть и на нижней пластинке, которая делается из листа дюралюминия марки Д16Т толщиной 6 мм.

Обработка фермы ведётся по операции в следующем порядке: сначала фрезеруют заготовку, оставляя припуск по 1,5 мм на сторону, затем ферму подвергают термической обработке (закалке и старению), после чего производится окончательная фрезеровка согласно чертежу (см. рис. 4). Потом шабером и наждачной бумагой на ферме выводятся все поперечные риски и наносится продольный штрих.

Ось (рис. 5) крепится на пилоне на двух взаимно перпендикулярных осях, которые позволяют ей отклоняться от вертикали на заданные углы.

На верхнюю часть оси насажены два подшипника качения: нижний -радиальный № 61204, верхний -радиально-упорный № 36204. Подшипники заключены в корпус (рис. 6), который своим нижним внутренним бортиком воспринимает в полёте всю нагрузку от веса автожира. При изготовлении корпуса надо обратить особое внимание на обработку сопряжения бортика с цилиндрической частью. Подрезы и риски в месте сопряжения недопустимы. В верхней части корпус подшипников имеет два ушка, в которые запрессованы бронзовые втулки. Отверстия во втулках обрабатываются развёртками после их запрессовки. Ось втулок должна проходить через ось вращения корпуса строго перпендикулярно ей. Сквозь отверстия в ушках корпуса подшипников и втулки, которые запрессованы в щёки фермы, проходит болт (рис. 7), являющийся горизонтальным шарниром несущего винта автожира, относительно оси которого лопасти совершают маховые движения.

Втулка несущего винта

Рис. 1. Шарнирная втулка несущего винта.

вту́лка несу́щего винта́ — основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на фюзеляж аэродинамических сил, возникающих на лопастях несущего винта. Различают следующие типы В. н. в. : шарнирные, упругие и жёсткие.

В конструкции шарнирной втулки (рис. 1) крепление лопастей к корпусу втулки осуществляется посредством горизонтальных, вертикальных и осевых шарниров. Горизонтальные шарниры обеспечивают возможность махового движения лопастей. Вертикальные шарниры позволяют лопастям совершать колебания в плоскости вращения (эти колебания возникают под действием переменных сил лобового сопротивления и сил Кориолиса, появляющихся при колебаниях лопасти относительно горизонтального шарнира). Благодаря шарнирному сочленению лопастей с корпусом втулки значительно снижаются переменные напряжения в элементах несущего винта и уменьшаются передающиеся от винта на фюзеляж вертолёта моменты аэродинамических сил. Осевые шарниры В. н. в. предназначены для изменения углов установки лопастей. В целях уменьшения свеса (изгиба) лопастей и создания необходимых зазоров между лопастями и хвостовой балкой вертолёта при невращающемся несущем винте и при малой частоте вращения несущего винта в конструкцию В. н. в. введены центробежные ограничители свеса.

Во всех шарнирах, в которых используются подшипники качения, предусматриваются системы смазки и уплотнений. В осевых шарнирах в качестве элементов, воспринимающих центробежные силы лопастей, применяются пластинчатые и проволочные торсионы, изготовленные из высокопрочной нержавеющей стали. Имеются так называемые эластомерные В. н. в. , в шарнирах которых применяются цилиндрические, конические или сферические эластомерные подшипники. Эти подшипники выполнены из слоев стали и привулканизированных к ним слоев эластомера. Отсутствие трущихся металлических деталей уменьшает износ узлов. Конструкция В. н. в. упрощается, устраняется необходимость применения торсионов, сокращается время на техническое обслуживание, увеличивается надёжность конструкции. В конструкциях шарнирных В. н. в. с целью предотвращения явления «земного резонанса» колебания лопастей относительно вертикальных шарниров гасятся с помощью демпферов. которые в зависимости от используемого рабочего элемента подразделяются на фрикционные, гидравлические, пружинно-гидравлические и эластомерные. Шарнирные В. н. в. в зависимости от схемы могут быть трёх типов: с разнесёнными горизонтальными шарнирами (оси горизонтальных шарниров находятся на некотором расстоянии от оси несущего винта), с совмещёнными горизонтальными шарнирами (оси горизонтальных шарниров пересекаются на оси несущего винта), с совмещёнными горизонтальными и вертикальными шарнирами (оси обоих шарниров пересекаются в одной точке, отнесённой на некоторое расстояние от оси несущего винта).

Упругая втулка (рис. 2) может быть выполнена с упругим элементом только в одном вертикальном или горизонтальном шарнире либо сразу в обоих шарнирах. Корпус упругой В. н. в. изготовляется, как правило, из композиционных материалов. За осевым шарниром, который может быть выполнен по схеме с подшипниками качения и торсионом или с эластомерными подшипниками, расположена внешняя упругая часть втулки, обеспечивающая маховые движения лопасти. На несущем винте с такой втулкой может быть значительно повышена эффективность управления по сравнению с шарнирной В. н. в. , что способствует увеличению манёвренности вертолёта.

Жёсткая втулка (рис. 3) имеет прочный центр, корпус (обычно из титанового сплава), прикреплённый к жёсткому приводному валу, и осевые шарниры, к корпусам которых через гребёнки прикреплены лопасти из композиционных материалов. В несущем винте с такой втулкой лопасть совершает колебательные движение в плоскости тяги и вращения не путём поворота в шарнирах, а благодаря большим деформациям лопасти или её более тонкого комлевого участка. Эти деформации оказываются допустимыми вследствие высокой прочности композиционных материалов. Такой винт с жесткой втулкой может рассматриваться подобным винту с шарнирной втулкой, имеющей большой разнос горизонтальных шарниров (10—35% от радиуса винта). Вертолёт с жёсткой В. н. в. обладает хорошими характеристиками управляемости. Важным преимуществом жёсткой В. н. в. является её простота (отсутствие высоконагруженных подшипников в шарнирах, демпферов и центробежных ограничителей свеса лопастей), облегчающая и удешевляющая изготовление винта и обслуживание его в эксплуатации.

В. П. Нефёдов.


Рис. 2. Упругая втулка несущего винта.


Рис. 3. Жёсткая втулка несущего винта.


Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия . Свищёв Г. Г. . 1998 .

Смотреть что такое "втулка несущего винта" в других словарях:

    Втулка несущего винта - основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на фюзеляж аэродинамических сил, возникающих на лопастях несущего винта.… … Энциклопедия техники

    Энциклопедия «Авиация»

    Рис. 1. Шарнирная втулка несущего винта. втулка несущего винта — основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на… … Энциклопедия «Авиация»

    Рис. 1. Шарнирная втулка несущего винта. втулка несущего винта — основной агрегат несущего винта; предназначается для крепления лопастей, передачи крутящего момента от вала главного редуктора к лопастям, а также для восприятия и передачи на… … Энциклопедия «Авиация»

    Несущий винт - вертолета Ми 2 Несущий (основной) винт воздушный винт с вертикальной осью вращения, обеспечивающий подъёмную силу летательному аппар … Википедия - Colibri EC120 B - многоцелевой легкий вертолет, способный перевозить до четырех пассажиров. Просторный грузовой отсек позволяет вместить пять больших чемоданов. Авария вертолета под Мурманском Разработчик: франко германо испанская Группа… … Энциклопедия ньюсмейкеров

    Энциклопедия «Авиация»

    Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»