» »

Механическая мощность определение. Еще раз про мощность: активную, реактивную, полную (P, Q, S), а также коэффициент мощности (PF)

03.09.2023
Содержание:

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности - . В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения - ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения - киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар - вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами - ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор - амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует , расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин - и . Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU - мощностью, а t - количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Выполняемой за некоторый промежуток времени, к этому промежутку времени.

Эффективная мощность , мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. - мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, - Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна - так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива - так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.

Единицы измерения

Другой распространённой единицей измерения мощности является лошадиная сила .

Соотношения между единицами мощности
Единицы Вт кВт МВт кгс·м/с эрг/с л. с.
1 ватт 1 10 -3 10 -6 0,102 10 7 1,36·10 -3
1 киловатт 10 3 1 10 -3 102 10 10 1,36
1 мегаватт 10 6 10 3 1 102·10 3 10 13 1,36·10 3
1 килограмм-сила-метр в секунду 9,81 9,81·10 -3 9,81·10 -6 1 9,81·10 7 1,33·10 -2
1 эрг в секунду 10 -7 10 -10 10 -13 1,02·10 -8 1 1,36·10 -10
1 лошадиная сила 735,5 735,5·10 -3 735,5·10 -6 75 7,355·10 9 1

Мощность в механике

Если на движущееся тело действует сила , то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

M - момент, - угловая скорость, - число пи , n - частота вращения (об/мин).

Электрическая мощность

Электри́ческая мо́щность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

S - Полная мощность, ВА

P - Активная мощность, Вт

Q - Реактивная мощность, ВАр

Приборы для измерения мощности

Примечания

См. также

Ссылки

  • Влияние формы электрического тока на его действие. Журнал «Радио», номер 6, 1999 г.

Wikimedia Foundation . 2010 .

Смотреть что такое "Мощность (физика)" в других словарях:

    Наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств … Физическая энциклопедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

    Физика высоких плотностей энергий (англ. High Energy Density Physics, HED Physics) раздел физики на стыке физики конденсированного состояния и физики плазмы, занимающийся изучением систем, имеющих высокую плотность энергии. Под высокой … Википедия

    Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность … Википедия

    Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока … Википедия

    У этого термина существуют и другие значения, см. Интенсивность. Интенсивность Размерность MT−3 Единицы измерения СИ Вт/м² … Википедия

    Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия

    Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия

Книги

  • Физика. 8 класс (DVDpc) , Образовательный комплекс (далее ОК)`1 С:Школа. Физика, 8 кл.` содержит анимированные презентации, обучающие интерактивные задания и тренажеры ко всем темам курса физики 8-го класса, в… Категория:

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок - см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) - в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

2. Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

3. Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

Однофазные автотрансформаторы

TDGC2-0.5 kVa, 2A
АОСН-2-220-82
TDGC2-1.0 kVa, 4A Латр 1.25 АОСН-4-220-82
TDGC2-2.0 kVa, 8A Латр 2.5 АОСН-8-220-82
TDGC2-3.0 kVa, 12A

TDGC2-4.0 kVa, 16A

TDGC2-5.0 kVa, 20A
АОСН-20-220
TDGC2-7.0 kVa, 28A

TDGC2-10 kVa, 40A
АОМН-40-220
TDGC2-15 kVa, 60A

TDGC2-20 kVa, 80A

http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. - в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 ... 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 ... 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

- (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e"+ie"
  4. Магнитная проницаемость m=m"+im"
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. - М.: Издательский центр "Академия", 2004.

Немцов М. В. Электротехника и электроника. - М.: Издательский центр "Академия", 2007.

Частоедов Л. А. Электротехника. - М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Цели урока:

  • Познакомиться с мощностью как новой физической величиной;
  • Развивать умения выводить формулы, пользуясь необходимыми знаниями прошлых уроков; развивать логическое мышление, умение анализировать, делать выводы;
  • Применять знания по физике в окружающем мире.

Ход урока

«И вечный бой! Покой нам только снится
Сквозь кровь и пыль…
Летит, летит степная кобылица
И мнет ковыль…
И нет конца! Мелькают вёрсты, кручи…
Останови! …Покоя нет! Степная кобылица несется вскачь!»

А.Блок «На поле Куликовом» (июнь 1908 г). (Слайд 1).

Урок сегодня я хочу начать с вопросов к вам. (Слайд 2).

1. Как вы думаете, имеет ли какое-то отношение лошадь к физике?

2. С какой физической величиной связана лошадь?

Мощность – правильно, это и есть тема нашего урока. Запишем ее в тетрадь.

Действительно, мощность двигателей автомобилей, транспортных средств до сих пор измеряют в лошадиных силах. Сегодня на уроке мы с вами узнаем всё о мощности с точки зрения физики. Давайте подумаем вместе и определим, что мы должны знать о мощности, как о физической величине.

Существует план изучения физических величин: (Слайд 3).

  1. Определение;
  2. Вектор или скаляр;
  3. Буквенное обозначение;
  4. Формула;
  5. Прибор для измерения;
  6. Единица величины.

Этот план и будут целью нашего урока.

Начнем с примера из жизни. Вам необходимо набрать бочку воды для полива растений. Вода находится в колодце. У вас есть выбор: набрать при помощи ведра или при помощи насоса. Напомню, что в обоих случаях механическая работа, совершенная при этом будет одинаковой. Конечно же, большинство из вас выберут, насос.

Вопрос: В чем разница при выполнении одной и той же работы?

Ответ: Насос выполнит эту работу быстрее, т.е. затратит меньшее время.

1) Физическая величина, характеризующая быстроту выполнения работы, называют мощностью. (Слайд 4) .

2) Скаляр, т.к. не имеет направления.

5) [N] = [ 1 Дж/с] =

Название этой единицы мощности дано в честь английского изобретателя паровой машины (1784г) Джеймса Уатта. (Слайд 5).

6) 1 Вт = мощности, при которой за время 1 с совершается работа в 1 Дж. (Слайд 6).

Самолеты, автомобили, корабли и другие транспортные средства движутся часто с постоянной скоростью. Например, на трассах автомобиль достаточно долго может двигаться со скоростью 100 км/ч.(Слайд 7).

Вопрос: от чего зависит скорость движения таких тел?

Оказывается, она напрямую зависит от мощности двигателя автомобиля.

Зная, формулу мощности мы выведем еще одну, но для этого давайте вспомним основную формулу для механической работы.

Учащийся выходит к доске для вывода формулы. (Слайд 8).

Пусть сила совпадает по направлению со скоростью тела. Запишем формулу работы этой силы.

1.

2.При постоянной скорости движения, тело проходит путь определяемой формулой

Подставляем в исходную формулу мощности: , получаем - мощность.

У нас получилась еще одна формула для расчета мощности, которую мы будем использовать при решении задач.

Мощность всегда указывают в паспорте технического устройства. И в современных технических паспортах автомобилей есть графа:

Мощность двигателя: кВт / л.с.

Следовательно, между этими единицами мощности существует связь.

Вопрос: А откуда взялась эта единица мощности? (Слайд 11).

Дж. Уатту принадлежит идея измерять механическую мощность в «лошадиных силах». Предложенная им единица мощности была весьма популярна, но в 1948 г. Генеральной конференцией мер и весов была введена новая единица мощности в международной системе единиц – ватт. (Слайд 12) .

1 л.с. = 735,5 Вт.

1 Вт = ,00013596 л.с.

Примеры мощностей современных автомобилей. (Слайд 13,14) .

Различные двигатели имеют разные мощности.

Учебник, страница 134, таблица 5.

Вопрос: А какова мощность человека?

Текс учебника , § 54. Мощность человека при нормальных условиях работы в среднем составляет 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и большую.

Вопрос: А чем «живые двигатели» отличаются от механических? (Слайд 15) .

Ответ: Тем, что «живые двигатели» могут изменять свою мощность в несколько раз.

Закрепление материала.

1.Расскажите все, что вы знаете о мощности. Ответ по плану изучения физической величины.

Ответ: N ≈ 2,9 кВт.

  1. § 54.
  2. Записать формулы мощности в таблицу формул.
  3. Упр. 29 (2,5) – 1 уровень.
  4. Упр. 29 (1,3) – 2 уровень.
  5. Упр. 29 (1,4) – 3 уровень.
  6. Задание 18 – на дополнительную оценку (на листочках).

Литература:

  1. А.В. Перышкин «Учебник физики для 7 класса», Дрофа, Москва, 2006.
  2. А. Блок «На поле Куликовом».
  3. 1C: Школа Физика 7 класс

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время, или

где N - мощность,
A - работа,
t - время.

Единицей мощности является ватт (1 Вт). 1 Вт - это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности - лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность , чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.