» »

Сопряжение мостов с подходами. Способ изготовления сопряжения проезжей части моста с насыпью Основные особенности компоновки промежуточных опор

27.10.2023

Министерство строительства и эксплуатации автомобильных дорог Молдавской ССР

ИНСТРУКЦИЯ

ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ УСТОЕВ АВТОДОРОЖНЫХ МОСТОВ И ПУТЕПРОВОДОВ, ОБСЫПАННЫХ МЕСТНЫМИ ГРУНТАМИ ПРИМЕНИТЕЛЬНО К УСЛОВИЯМ МОЛДАВСКОЙ ССР

ВСН 5-79

Минавтодор МССР

Утверждены
Министерством строительства и эксплуатации автомобильных дорог Молдавской ССР
"19" октября 1978 г. № 341

Кишинев 1978

ПРЕДИСЛОВИЕ

Настоящая Инструкция разработана впервые, в ней отражены особенности расчета устоев, обсыпанных местными грунтами, конструирования откосов конусов и сопряжения мостов с насыпью, технологии производства работ по устройству сопряжений моста и укреплению откосов конусов.

Инструкция разработана в отделении Искусственных сооружений всесоюзного научно-исследовательского института транспортного строительства (ЦНИИС) Минтрансстроя (к.т.н. Рыбчинский Д.П., к.т.н. Глотов Н.М., д.т.н. Луга А.А.) при участии институтов "Сибгипротранс" (инж. Карманов Ф.Г.), "Молдгипроавтодор " (инженеры Штерн А.Я., Усачев Е.Т., Здерчук А.И., Сухарев И.К.), треста "Оргдорстрой" (инж. Лисайчук А.И.) и "Союздорпроекта" (инж. Хазан И.А.).

Разделы Инструкции по конструированию сопряжений моста с насыпью и технологии их устройства составлены на основе типового проекта "Сопряжений автодорожных мостов и путепроводов с насыпью" (Союздорпроект, сер. 8.503-41, 1977) с учетом "Методических рекомендаций по проектированию и строительству сопряжений автодорожных мостов и путепроводов с насыпью" (СоюздорНИИ, 1975).

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящая Инструкция предназначена для использования организациями, осуществляющими проектирование и строительство опытных автодорожных мостов и путепроводов на территории Молдавской ССР.

1.2. В Инструкции отражены специфические особенности расчета устоев, конструирования откосов конусов и сопряжения мостов с насыпью, технологии производства работ по устройству сопряжения моста и укреплению откосов конусов.

1.3. При проектировании устоев и сопряжений с насыпью автодорожных мостов и путепроводов следует руководствоваться, кроме указаний настоящей Инструкции, соответствующими требованиями глав СНиП по проектированию мостов и труб; оснований зданий и сооружений; свайных фундаментов; "Технических условий проектирования железнодорожных, автодорожных и городских мостов и труб"; государственных стандартов.

В период производства работ по постройке мостов и путепроводов следует выполнять требования главы СН иПпо технике безопасности в строительстве.

1.4. Мосты и путепроводы, возводимые в районах с сейсмичностью 7 баллов и выше, следует проектировать с учетом указаний главы СНиП на строительство в сейсмических районах и соответствующих разделов настоящей Инструкции.

2. РАСЧЕТЫ

Общие указания

2.1. Расчеты несущей способности и деформативности грунтовых оснований и фундаментов устоев мостов и путепроводов следует производить по методу предельных состояний, руководствуясь указаниями главы СНиП по проектированию мостов и труб.

2.2. Нагрузки и воздействия при расчете оснований и фундаментов устоев должны приниматься в соответствии с указаниями главы СНиП по проектированию мостов и труб.

2.3. Номенклатуру грунтов следует принимать в соответствия с главой СНиП на проектирование оснований зданий и сооружений.

2.4. Для обсыпки устоев (засыпка за ними и отсыпка конусов) рекомендуется использовать грунт, из которого отсыпают подходные участки насыпи.

2.5. Значения физико-механических характеристик грунтов основания (угол внутреннего трения φ , объемный вес γ, сцепление С и др.) следует определять на основании данных инженерно-геологических изысканий лабораторными и полевыми исследованиями с учетом природного состояния грунта и возможных его последующих изменений при строительстве и эксплуатации сооружения.

2.6. Для определения расчетных значении сдвиговых характеристик грунтов, используемых дли отсыпки конусов и примыкающих к устоям участков насыпи, необходимо отобрать пробы с нарушенной структурой (по технологии отбора монолитов), по которым в лабораторных условиях определяют оптимальную влажность и максимальную плотность по методу стандартного уплотнения. Затем изготовляют образцы путем трамбования и формовки грунта при оптимальной влажности и требуемой плотности, устанавливаемой настоящей Инструкцией в зависимости от глубины расположения данного слоя от поверхности насыпи.

При отборе проб и испытании грунтов, а также для оценки местной устойчивости откосов, следует пользоваться соответствующими разделами "Методических рекомендаций по обеспечению устойчивости откосов земляного полотна при проектировании и строительстве автомобильных дорог в условиях Молдавской ССР", разработанных СоюздорНИИ.

2.7. Горизонтальное давление грунта на устои от временной вертикальной нагрузки следует определять в соответствии с указаниями действующих нормативных документов в части, касающейся проектирования автодорожных мостов и путепроводов.

Давление грунта на устои от воздействия его собственного веса надлежит определять согласно указаниям пп. 2.8 - .

Горизонтальное давление грунта на устои

где - горизонтальное давление

грунта, тс/м 2 ;

γ н - нормативное значение объемного веса грунта, тс/м 3 ;

φ н - нормативное значение угла внутреннего трения грунта, град.;

С н - нормативное значение внутреннего сцепления грунта, тс/м 2 ;

Н - высота расчетного слоя грунта, м, считая от его основания до верха дорожного покрытия;

В - ширина устоя в плоскости задней грани, на которую действует (распределяется) горизонтальное давление, м.


(3)

где - горизонтальное давление дренирующего грунта, тс/м 2 в уровне подошвы слоя;

h д - высота слоя дренирующего грунта, м, считая от его основания до верха дорожного покрытия.

2.14. Нормативное значение горизонтального давления грунта Е 2 на устой со стороны пролета следует учитывать в виде активного давления.

2.15. Равнодействующая нормативного значения горизонтального давления Е 2 (тс) на устой по передний грани (см. ) от собственного веса насыпного связного грунта (выше естественной поверхности) надлежит определять по формуле

(4)

где - горизонтальное давление грунта, тс/м 2 ;

α - угол наклона образующей конуса к горизонту и уровне естественной поверхности грунта, град.;

Н 2 - расстояние от естественной поверхности грунта до образующей конуса по вертикали, проходящей по передней грани устоя, м;

Z 2 - глубина, до которой отсутствует давление грунта, м.

2.20. Горизонтальное давление грунта на переднюю грань обсыпного устоя от веса конуса (рис. 2, а и б) в уровне естественной поверхности условно принимается равным 2/3 от величин, приведенных в , где за Н принимается расстояние Н 2 от естественной поверхности грунта до образующей конуса по вертикали, проходящей по передней грани массивного фундамента или плиты свайного фундамента.


п/п

Грунты

Нормативное значение горизонтального давления е Н в уровне естественной поверхности грунта (тс/м 2 )

Плотные пески, гравий, галька, суглинки и глины полутвердой

0,35 γ Н n 1 Н

Пески и супеси средней плотности, тугопластичные суглинки и глины

0,50 γ Н n 1 Н

Пески и супеси, рыхлые пылеватые пески, м ягкопластичные глины и суглинки

0,65 γ Н n 1 Н

Суглинки, глины и илы текучепластичные и текучей консистенции

0,75 γ Н n 1 Н

Значение коэффициента п 1

Ширина насыпи поверху, м

Высота насыпи, и

Примечания: 1. При ширине насыпи поверху менее 10 м значение коэффициента п 1 следует принимать для ширины 10 м.

2. Для промежуточных значения высот и ширин насыпи значение коэффициента п 1 определяют по интерполяции.

2.22. Если вершина эпюры избыточного горизонтального давления располагается ниже фундамента, то ее низ следует ограничивать уровнем его подошвы.

2.23. Величины равнодействующих избыточного горизонтального давления грунта, действующих на фундамент ниже подошвы плиты, рекомендуется приводить к уровню подошвы, взяв отношение суммы моментов всех этих сил относительно условной точки С и С 1 (), или же относительно уровня острия свай, если вершина эпюры избыточного горизонтального давления грунта располагается ниже фундамента - к расстоянию от этой условной точки до подошвы плиты.

2.24. При наличии оставленного в грунте шпунтового ограждения вокруг фундамента за его ширину принимают ширину ограждения.

2.25. Расчет опор па устойчивость против скольжения необходимо производить по формуле:

где ΣЕ i - сумма всех активных сил, действующих параллельна проверяемому сечению, тс;

f - коэффициент трения, принимаемый согласно п.2.26;

G L - нормальные составляющие всех активных сил, перпендикулярные проверяемому сечению, тс;

т ≤ 0,8 - коэффициент условий работы.

2.26. Проверку устойчивости опор против скольжения следует производить с учетом взвешивающего действия воды при наивысшем ее уровне при следующих значениях коэффициентов трения подошвы фундамента по грунту:

для глин и скальных грунтов с омыливающейся поверхностью (глинистые известняки, глинистые сланцы и т.п.):

при затоплении водой0,1

во влажном состоянии0,23

в сухом состоянии0,30

для суглинков и супесей0,30

для песков0,40

для гравелистых и галечниковых грунтов0,50

для скальных пород с неомыливающейся поверхностью0,60

Глубокий сдвиг устоев совместно с грунтом по круглоцилиндрической поверхности

2.27. Устои, расположенные на крутых склонах, а также устои с подходной насыпью высотой более 10 м в случае нахождения под несущий пластом слоя слабого глинистого грунта или прослоек водонасыщенного грунта, подстилаемого глиной, следует рассчитывать на устойчивость против глубокого сдвига (смещение фундамента совместно с грунтом по круглоцилиндрической поверхности скольжения).

2.28. Радиус и положение центра наиболее опасной круглоцилиндрической поверхности скольжения при расчете определяет методом попыток. Поверхность скольжения не должна пересекать тело фундамента, за исключением случаев проверки устойчивости свайных фундаментов, в которых поверхность скольжения следует также принимать пересекающей сваи (при наличии толщи слабого грунта в ее пределах).

2.29. Расчет против скольжения по круглоцилиндрической поверхности производится следующим образом.

Для принятой произвольной, но вероятной цилиндрической поверхности скольжения радиуса R определяется отношение момента сдвигающих сил М сд относительно центра вращения О () к предельному моменту удерживающих сил относительно того же центра. При определении предельного момента М ПР сопротивление свай скольжению сползающего массива грунта по круглоцилиндрической поверхности, пересекающей сваи, не учитывается, что обеспечивает дополнительный запас устойчивости. Эти моменты следует определять по формулам:

(7)

где Т i = G l . sinα i - сдвигающая составляющая веса i - o й части массива, тс;

G l - вес i - ой части массива, заключенной между двумя вертикальными плоскостями, тс; при поверхности сдвига, пересекающей сваи, вес устоя и давление от веса пролетного строения не учитывается; в случае устройства фундамента мелкого заложения (в котловане) эти силы следует учитывать;

Если поверхность скольжения в пределах i -го участка проходит по водопроницаемому слою (песку, супеси) или по границе водопроницаемого и водонепроницаемого слоев, то вес G i следует определять с учетом гидростатического взвешивания грунта, расположенного ниже уровня воды при расчетном паводке;

Суммарное горизонтальное оползневое давление на вертикальную плоскость, проходящую по задней грани устоя определяют по формуле:

(9)

где T i = G i . sin α i - сдвигающая сила, тc ;

U i = N i . f i - удерживающая сила, тс;

G i - сила, равная расчетному весу i - го участка грунтового массива, тс;

N i = G i . cos α i - нормальная составляющая силы G i к поверхности скольжения, тc ;

α i - угол наклона к горизонту (в пределах i -го участка) кровли грунтового или скального пласта, по которому возможно сползание вышерасположенного грунтового массива, град.;

f i - коэффициент трения между подошвой i - го участка и кровлей пласта, по которому возможно сползание, принимается по табл. 3;

S i - горизонтальная сейсмическая c ила, действующая на грунтовав массив, тс, принимаемая по .


Коэффициент α 2

Глубина заложения подошвы фундамента в м

Коэффициент α 2 при высоте Н 2 в м

0,04

0,05

0,06

0,03

0,01

0,05

0,02

0,03

0,04

0,01

0,02

0,03

0,01

0,02

0,01

Учет сейсмических воздействий

2.39. Указания настоящего раздела распространяются на проектирование устоев постоянных мостов и путепроводов на автомобильных дорогах общей сети I , II , III и IV категории, автомобильных дорогах промышленных предприятий I и II категории, скоростных городских дорогах и на магистральных улицах общегородского и районного значения при расчетной сейсмичности 7, 8 и 9 баллов, возводимых в районах с сейсмичностью 7, 8 и 9 баллов.

2.40. Сейсмичность района или пункта следует принимать согласно указаниям главы СНиП по строительству в сейсмических районах в соответствии с разработанной на их основе картой сейсмического районирования (рис. 8).

2.41. Уточнение сейсмичности площадки строительства в зависимости от геологических условий производится на основании карт сейсмического микрорайонирования.

Сейсмичность площадки строительства допускается уточнять на основании общих инженерно-геологических и гидрогеологических изысканий согласно (по согласованию с инстанцией, утверждающей проект).

2.42. Устои моста (путепровода) следует проектировать, исходя из расчетной сейсмичности сооружении, принимаемой по .

2.43. Расчет устоев мостов (путепроводов) с учетом сейсмического воздействия следует производить по первому предельному состоянию.

2.44. Конструкция устоев, проектируемых для строительства в сейсмических районах, должна проверяться расчетами:

на основное сочетание нагрузок в соответствии с требованиями главы СНиП на проектирование мостов и труб;

на особое сочетание нагрузок с учетом сейсмического воздействия в соответствии со СНиП на проектирование мостов и труб.

2.45. Величины нагрузок и коэффициентов перегрузки следует принимать в соответствии с действующими нормами проектирования автодорожных мостов.

2.46. В расчетах устоев с учетом сейсмических воздействий к величинам расчетных нагрузок необходимо вводить коэффициенты сочетания п 0 :

для постоянных нагрузок и воздействий - 1;

для вертикальных временных подвижных нагрузок (без динамического коэффициента) - 0,35.

Сейсмичность площадки строительства в баллах в зависимости от инженерно-геологических и гидрогеологических условий

Грунта

Сейсмичность района в баллах

1. Скальные грунты всех видов, кроме выветрелых

2. Крупнообломочные грунта при глубине уровня грунтовых вод h ≥ 15 м

3. Скальные грунты выветрелые и крупнообломочные грунты при глубине уровня грунтовых вод 6 ≤ h ≤ 10 м

4 Песчаные и г линистые грунты при h ≥ 8 м

5. Скальные грунты выветрелые и крупнообломочные грунты при глубине уровня грунтовых вод h ≤8 м

6. Песчаные и глинистые грунты при h ≤ 4 м

Примечания : Уровень грунтовых вод h определяется от планировочной отметки.

2. При положении уровня грунтовых вод h соответствующей промежуточным значениям, указанными в табл. 6, грунты должны приводиться к категории сейсмических свойств ( I или II или III ) в зависимости от особенностей рельефа местности, условий залегания пластов грунта, степени выветрелости грунтов, близости плоскостей сброса и других подобиях факторов.

Расчетная сейсмичность мостов (путепроводов)

Сооружение

Расчетная сейсмичность сооружения при сейсмичности площадка строительства в бандах

1. Большие мосты на автомобильных дорогах общей сети I и II категорий, скоростных городских дорогах и магистральных улицах общегородского значения

2. Большие мосты на автомобильных дорогах общей сети III , IV категории и магистральных улицах районного значения, а также средние мосты на автомобильных дорогах общей сети I и II категории, скоростных городских дорогах и магистральных улицах общегородского значения

3. Средние мосты на автомобильных дорогах общей сети III , IV категории, магистральных улицах районного значения и на дорогах промышленных предприятий, малые мосты на дорогах всех категорий

Примечания: 1. Указанные в п. 1, табл. 7 большие мосты в районах с сейсмичностью 9 баллов и особо ответственные большие мосты на дорогах прочих категорий, в районах с сейсмичностью 8 и 9 баллов должны возводиться с дополнительными антисейсмическими мероприятиями по специальным проектам.

2. В тех случаях, когда разрушение перечисленных в п. 8, табл. 7 сооружений может быть сопряжено с длительным перерывом давления, расчетная сейсмичность этих сооружений (кроме деревянных мостов) должна назначаться по п. 2, табл. 6.

Для сейсмических нагрузок, учитываемых совместно с постоянными нагрузками (воздействиями), коэффициент сочетания принимается равным 1, а для сейсмических нагрузок, учитываемых совместно с постоянными нагрузками (воздействия) и с вертикальными временными подвижными нагрузками, коэффициент сочетания принимается равным 0,8.

2.47. Сейсмические силы принимают действующими горизонтально в направлениях вдоль и поперек оси моста. Действие сейсмической нагрузки в обоих направлениях учитывается раздельно.

2.48. Расчетные сейсмические нагрузки, действующие на устои, следует определять по указаниям главы СНиП на строительство в сейсмических районах ивключать их в особые сочетания нагрузок.

2.49. Воздействий сейсмических нагрузок следует учитывать совместно со всеми постоянными нагрузками и воздействиями (принимая нормативные их величины), а также с временными подвижными вертикальными нагрузками с учетом указанных выше коэффициентов.

Расчеты с учетом сейсмических воздействий необходимо производить как при наличии временной подвижной вертикальной нагрузки на пролетных строениях, так и без нее. Для сооружений на дорогах промышленных предприятий расчеты допускается производить без учета временной подвижной нагрузки.

Сейсмические нагрузки учитывают совместно с нагрузками НК-80 и НГ-80, с временной вертикальной нагрузкой на тротуарах и с нагрузкой от торможения.

2.50. Полное горизонтальное давление (статическое совместно с сейсмическим) грунта насыпи (связного или несвязного) на заднюю грань устоя е с рекомендуется определять по формуле

(12)

где е - горизонтальное статическое давление грунта (связного или несвязного), тс/м 2 ;

К с - коэффициент сейсмичности, принимаемый по табл. 8;

φ Н - нормативное значение угла внутреннего трения грунта, град.

2.51. Равнодействующую полного горизонтального давления грунта насыпи (связного или несвязного) на заднюю грань устоя Е С рекомендуется определять по формуле

(13)

где Е - равнодействующая нормативного значения горизонтального статического давления грунта насыпи (связного или несвязного) на заднюю грань устоя, тс, определяемая по .

Остальные обозначения те же, что и в ф. 12.

2.52. Сейсмическое горизонтальное давление грунта конуса на переднюю грань устоя не учитывают.

2.53. Приведенными в пп. 2.50 ÷ 2.51 формулами можно пользоваться при определении давления грунта на устой, если его грани наклонены к вертикали не более ± 10°.

2.54. Избыточной полное горизонтальное давление (статическое совместно с сейсмическим) грунта на фундамент от веса подходной насыпи в уровне естественной поверхности рекомендуется определять по формуле

(14)

где Е Н - избыточное горизонтальное статическое давление грунта, тс/м 2 , на фундамент от веса подходной насыпи в уровне естественной поверхности, определяемое по ;

К с - коэффициент сейсмичности, принимаемый по ;

φ Н - нормативное значение угла внутреннего трения грунта, окружающего фундамент, град.

Построение эпюры полного давления ведется аналогично построению эпюр е н п ри статическом давлении.

2.53. В расчете устоев, расположенных в районах с сейсмичностью 7, 8 и 9 баллов, на устойчивость против глубокого сдвига совместно с грунтом по круглоцилиндрической поверхности скольжения, а также на локальный оползневой сдвиг следует учитывать действующие горизонтальные сейсмические нагрузки (см. и ).

Горизонтальную сейсмическую нагрузку S i , действующую на устой и грунтовый массив, рекомендуется определять по формуле

S i = G i K C m K , ()

где G i - вес элемента устоя или грунтового массива, т c ;

K C - коэффициент сейсмичности, принимаемый по ;

т К - 1,5 - коэффициент, учитываемый при вычислении сейсмической нагрузки, действующей на устой;

т К = 1 - коэффициент, учитываемый при вычислении сейсмической нагрузки действующей на грунтовый массив.

В расчетах устоев принимается, что сейсмическая нагрузка S i направлена в сторону пролета.

Момент сдвигающих сил следует определять по формуле

(16)

где S i - горизонтальная сейсмическая сила, действующая на элементы устоя и грунтового массива, тс;

- плечо силы S i относительно центра вращения, м.

Остальные обозначения те же, что и в .

2.56. Несущую способность по грунту фундаментов мелкого заложения следует проверять пользуясь условием

(17)

где σ max -наибольшее расчетное давление на основание под подошвой фундамента, т/м 2 ;

N и М - расчетные значения нормальной силы, тс, и момента, тс . м, в уровне подошвы фундамента от заданной комбинация нагрузок, включая собственный вес фундамента и грунта на уступах;

Р и W - площадь, м 2 , подошвы фундамента и ее момент сопротивления, м 3 , относящийся к наиболее нагруженному ребру;

т с - сейсмический коэффициент условий работы, принимаемый равным;

т С = 1,2 для глинистых грунтов с показателем консистенции J L ≤ 0.4, скальных пород, плотных грунтов, крупнообломочных и песчаных грунтов;

т С = 0,7 для глинистых грунтов с показателем консистенции J L > 0,75 и рыхлых водонасыщенных песков;

т = 1 для всех остальных грунтов;

R - расчетное значение сопротивления грунтового основания осевому сжатию, тс/м 2 , определяемое по указаниям п.682 СН 200-62.

Если (где W " - момент сопротивления подошвы фундамента, относящийся к менее нагруженному ребру), то наибольшее напряжение в грунте под фундаментом следует определять по формуле

(18)

где α - д лина прямоугольной в плане подошвы фундамента (размер в плоскости действия сил), м;

в - ширина подошвы фундамента, м.

2.57. В расчетах на устойчивость фундаментов мелкого заложения против опрокидывания и скольжения коэффициент условий работы следует принимать т кр = 1.

2.58. Расчет свайных фундаментов устоев или устоев из свай, свай-оболочек, свай-столбов должен включать проверки:

а) несущей способности свай (столбов, оболочек) по грунту на вертикальную сжимающую и выдергивающую нагрузку;

б) несущей способности свай (столбов, оболочек) и фундаментной плиты (ригеля) по материалу;

в) устойчивости свай (столбов, оболочек) по условию ограничения давления, оказываемого на грунт боковой поверхностью сваи.

2.59. Н есущую способность Р 0 забивной висячей сваи, воспринимающей осевую сжимающую нагрузку в условиях сейсмического воздействия, следует определять по формуле

()

где К - коэффициент однородности грунта, принимаемый равным 0,7;

т - коэффициент условий работы, принимаемый в зависимости от числа свай в фундаменте: при числе свай до 5 шт. т = 0,8, при числе свай от 6 до 10 шт. т = 0,9, при числе свай большем 10 шт. т = 1;

т c , т ci - коэффициенты условий работы, учитывающие влияние c ей c мических колебаний на несущую способность грунта соответственно под нижним концом и по боковой поверхности сваи в i слое грунта, принимаемые по табл. 9;


Таблица 9

Расчетная сейсмичность сооружений в баллах

Значения коэффициентов

т с

m ci

Песчаные грунты плотные и средней плотности маловлажные и средней влажности

Глинистые грунты твердой, полутвердой и тугопластичной консистенции

Песчаные грунты плотные и средней плотности

Глинистые грунты консистенции

маловлажные и средней влажности

водонасыщенные

твердой, полутвердой и тугопластичной

мягкопластичной

текучепластичной

0,91

0,95

0.95

0,90

0,95

0,85

0,75

0,85

Q .9 Q

0,85

0,80

0,90

0,80

0,70

0,75

0,85

0,75

0,70

0,85

0,70

0,60

Примечание . Для скальных и крупнообломочных грунтов принимают m с независимо от расчетной сейсмичности.


R H - нормативное значение сопротивления грунта под нижним концом свая, тс/м 2 , определяемое по указаниям главы СНиП на проектирование свайных фундаментов;

F - площадь опирания на грунт, сваи, м 2 , принимаемая по площади поперечного сечения сваи брутто;

U - периметр поперечного сечения сваи, м;

- нормативное значение сопротивления i - го слоя грунта основания по боковой поверхности сваи, тс/м 2 , определяемое по указаниям главы СНиП на проектирование свайных фундаментов, учитываемое с глубины h ≥ 5 м, считая от естественной поверхности грунта;

l i - толщина i - го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

h - глубина, до которой не учитывается сопротивление грунта по боковой поверхности сваи, м;

2.60. Несущую способность сваи, работающей на выдергивание в сейсмических условиях Р В0 при глубине погружения l > 5 м, необходимо определять по формуле

(20)

где т - коэффициент условий работы, принимаемый т = 0,8.

Остальные обозначения те же, что и в .

2.61. Несущую способность свай (столбов, оболочек) и фундаментной плиты (ригеля) по материалу на совместное действие расчетных усилий следует проверять в соответствии с требованиями главы СНиП на проектирование бетонных и железобетонных конструкций и Указаний СН 363-67.

2.62. Проверку устойчивости сваи (столбец оболочки) по условию ограничения давления, оказываемого на грунт боковой поверхностью сваи, рекомендуется производить в соответствии с п. 6 приложения главы СНиП по проектированию свайных фундаментов, принимая значения расчетного угла внутреннего трения для несвязных грунтов пониженными на величину Δφ , равную при расчетной сейсмичности 7 баллов - 2°, 8 баллов - 4° и 9 баллов - 7°.

Расчет на устойчивость производить не требуется для свай с размерами сторон (диаметром) поперечного сечения в ≤ 0,6 м, погруженными на глубину более 10 . в за исключением случаев погружения их в рыхлые пески.

2.63. Несущую способность сваи, воспринимающую вертикальную нагрузку в условиях сейсмических воздействий Р С , при использовании результатов полевых испытаний следует определять по формуле

где Р 0 и Р - значения несущей способности сваи, воспринимающей вертикальную нагрузку, вычисленные соответственно с учетом и без учета сейсмических воздействий;

Р нс - несущая способность сваи, тс, определенная по результатам полевых испытаний динамической или статической нагрузкой, либо по данным статического зондирования грунта.

2.64. При определении сейсмической нагрузки на устой со свайным (столбчатым) фундаментом допускается принимать сваи (столбы, оболочки) условно невесомыми, а 25% их веса на участке от низа плиты ростверка (насадки) до уровня жесткой заделки в грунте добавлять к весу плиты ростверка (насадки).

2.65. Подферменники (оголовки) устоев следует рассчитывать на усилия, передаваемые анкерами, устанавливаемыми для закрепления опорных частей.

3. КОНСТРУИРОВАНИЕ

Общие указания

3.1. Для мостов и путепроводов, расположенных в несейсмических районах, могут быть использованы любые конструкции устоев из числа, применяемых в настоящее время. Рекомендуется применять свайные устои козлового типа, сваи которых погружают предварительно отсыпанные конуса и примыкающие к ним части отходов.

3.2. Конструкции фундаментов устоев и сопряжения их с насыпью в несейсмических районах следует назначать, руководствуясь действующими нормами проектирования автодорожных мостов, главы СНиП по проектированию мостов и труб и соответствующими типовыми проектами.

3.3. Конструирование устоев и сопряжения их с насыпью для сейсмических районов следует осуществлять, руководствуясь указаниями пп. 3.4 ÷ 3.31.

Устои

3.4. Указания настоящего подраздела относятся к конструированию устоев мостов и путепроводов, проектируемых для сейсмических районов.

3.5. Основанием для фундаментов устоев должны служить, как правило, скальные грунты, крупнообломочные грунты, плотные и средней плотности песчаные грунты, твердые, полутвердые и тугопластичные глинистые грунты.

Запрещается заложение подошвы фундамента устоя моста с расчетной сейсмичностью 9 баллов на водонасыщенных рыхлых и средней плотности песчаных грунтах.

3.6. Подошва фундамента должна быть, как правило, горизонтальной. Фундаменты с уступчатой подошвой допускается проектировать только на скальных породах.

3.7. Устои следует проектировать возможно более простых форм. По условиям сейсмостойкости предпочтительными является железобетонные монолитные или сборные конструкции устоев.

Применение бетонных устоев с проемами, обратными стенами и подрезанной задней гранью при расчетной сейсмичности 9 баллов не допускается, а при 7 и 8 баллах не рекомендуется.

3.8. Применение бетонных устоев в виде отдельно стоящих столбов при расчетной сейсмичности 7 и 8 баллов не рекомендуется, а при 9 баллах не допускается.

3.9. В обсыпных устоях с фундаментом из свай, оболочек или столбов подошву его плиты рекомендуется, как правило, располагать над естественной поверхностью грунтов независимо от их физико-механических свойств. Допускается плиту таких устоев располагать в грунтах природного сложения с характеристиками сжимаемости и прочности лучше, чем у грунтов, использованных для отсыпки подходных участков насыпи.

Все устои больших и средних мостов с плитой, расположенной над грунтом, следует проектировать только с наклонными сваями как вдоль, так и поперек моста.

Столбы и оболочки в устоях допускается использовать в вертикальном положении при условии проверки их горизонтальной жесткости и давления боковой поверхности на грунт.

3.10. Нижние концы оболочек и столбов необходимо заделывать в грунты, указанные в п. 3.5. Верх свай, оболочек или столбов следует объединять жесткой плитой, обеспечивающей их совместную работу.

3.11. В конструкции устоев следует проверять расчетом прочность свай (оболочек, столбов), их заделки в плиту и прочность плиты.

Сопряжение устоев с насыпью

3.12. Конструкция сопряжения устоя с подходными насыпями должна осуществляться с помощью переходных железобетонных плит.

3.13. Для плавного въезда автомобиля на мост при устройстве сопряжения его с насыпью необходимо:

а) обеспечить повышенную плотность грунтов земляного полотна по всей его высоте (коэффициент уплотнения грунтов при оптимальной влажности должен быть не менее 0,98 - 1,0);

б) создать надежный отвод поверхностных вод с покрытия и из тела насыпи с применением дренажных слоев под покрытием с устройством бортовых лотков и противофильтрационной защиты покрытия и обочин в пределах сопряжения;

в) выдержать, если возможно по условиям строительства дороги, земляное полотно до устройства постоянного покрытия не менее года, в течение которого происходит основные осадки тела иоснования насыпи;

г) уложить переходные плиты длиной (согласно п. 3.17) достаточной для перекрытия зоны образования местных осадок и для обеспечения плавного сопряжения проезжей части моста с дорожным покрытием.

3.14. Высоту насыпи около моста принимают исходя из гидравлических и конструктивных условий с соблюдением требований СНиП на проектирование автомобильных дорог о требуемой величине возвышения низа дорожной одежды над расчетным уровнем грунтовых поверхностных вод с 10 %-ной вероятностью превышения, а также над уровнем поверхности земли на участках с необеспеченным поверхностным стоком.

3.15. Конечную осадку уплотненного земляного полотна рекомендуется принимать в зависимости от вида грунта и высоты насыпи по табл. 10.

3.16. Конечную осадку основания насыпи для грунтов, уплотняющихся под воздействием веса насыпи, рекомендуется определять расчетом в соответствии с "Методическими указаниями по проектированию земляного полотна на слабых грунтах".

Таблица 10

Грунты насыпи

Осадка насыпи, %, при ее высоте, м

до 6

6 ÷12

12 ÷ 24

Глины

0,6 ÷ 0,8

1,0 ÷ 1,3

1,9 ÷ 2,2

Суглинки

Супеси

Через год после обсыпки земляного полотна осадку насыпи можно принимать 50 %, а основания – 75 % от полной.

Основанию дренирующей засыпки создается продольный в сторону пролета уклон (0,05) и двухскатный поперечный уклон (0,05).

3.24. Крутизну откосов конуса и примыкающей к устою части подходной насыпи следует назначать с учетом обеспечения устойчивости откосов, но не менее величин, указанных в табл. 13. В сейсмических районах крутизну откосов следует принимать на 1:0,25 положе крутизны откосов в несейсмичес ких районах.

Крутизна откосов конусов высотойвыше 12 м определяется расчетом.

Таблица 13

Вид грунтов

Несейсмический район

Район с сейсмичностью 7 баллов и выше

Наибольшая крутизна откосов при высоте насыпи (в м)до

В нижней части (до 6 м)

В верхней части (высотой до 6 м)

В нижней части (до 6 м)

Глинистые грунты, песок мелкий и пылеватый

1:1,5

1:1,5

1:1,75

1:1,75

1:1,75

1: 2

4.6. Грунт для отсыпки насыпи должен иметь оптимальную влажность.

В процессе производства работ не следует допускать переувлажнения грунтов и в дождливый период отсыпанный грунт необходимо немедленно разравнивать и уплотнять, придавая поверхности слоя уклон с целью обеспечения водоотвода. При интенсивных дождях отсыпку необходимо прекращать.

В жаркое время года отсыпку и уплотнение грунтов следует производить возможно быстро, не допуская его пересыхания.

4.7. Наименьший коэффициент уплотнения грунта (отношение наименьшей требуемой плотности грунта с максимальной при стандартном уплотнении) следует принимать равным 0,90.

Особенно тщательно необходимо уплотнять верхний слой (порядка 1,5 м) примыкающей к устою части подходной насыпи. Коэффициент уплотнения грунта должен быть не менее 0,98 - 1,0.

Более высокие требования к уплотнению предъявляются к грунтам высоких и подтапливаемых насыпей.

Технология устройства сопряжения моста с насыпью

4.8. В зависимости от особенностей конструкции устоев (козловые, столбчатые или стоечные со свайным или мелкого заложения фундаментом) последовательность работ по строительству сопряжений моста с насыпью может меняться.

При козловом (столбчатом) типе устоя нижнюю часть конуса и примыкающей к устою части подходной насыпи целесообразно отсыпать до погружения свай (столбов, оболочек) с послойным уплотнением до степени 0,98 - 1,0.

Высоту примыкающей части подходной насыпи и конуса (h пр ) принимают равной: при высоте насыпи Н нас = 3 ÷ 4 м h пр = Н нас - 2 м; при Н нас = 4 ÷ 6 м h пр . = Н нас. - 3 м. При Н нас > 6 м высота отсыпки определяется наличием копрового оборудования для погружения свай на проектную глубину.

После сооружения устоя подходы и конус отсыпают на всю высоту. Отсыпку ведут послойно с уплотнением до коэффициента 0,98 - 1,0. На расстоянии 2 м и более от устоя грунт уплотняют тяжелыми машинами, а вблизи и в стесненных условиях малогабаритными механизмами. При ручном уплотнении толщина слоев не должна превышать 10 - 15 см. Одновременно обсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит.

Качество уплотнения грунта необходимо систематически контролировать.

4.9. После возведения подходных насыпей и конусов на проектную высоту дальнейшая последовательность работ зависит от типа покрытия (цементобетон или асфальтобетон).

При цементобетонном покрытии:

В пределах длины поверхностных переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, которое эксплуатируется в течение года;

Удаляют верхний загрязненный слой (или весь) временного покрытия; при необходимости досыпают основание дорожного покрытия и уплотняют его до 0,96 - 1,0;

Устраивают котлованы под переходные плиты и траншеи под опорный лежень;

Укладывают в траншеи лежень и в котлованах втрамбовывают щебень слоем 5 см;

После устройства щебеночной подготовки укладывают переходные и промежуточные плиты, устраивают постоянное покрытие с водоотводными лотками;

При асфальтобетонном покрытии:

Устраивают котлованы под переходные плиты и траншеи под опорный лежень;

Укладывают в траншеи лежень, в котлованах втрамбовывают щебень слоем 5 см и после устройства щебеночной подготовки укладывают переходные плиты;

Устраивают временное покрытие (на длине переходных плит плюс 10 м) из щебня или каменной мелочи, которое эксплуатируется в течение года;

Удаляют верхний загрязненный слой временного покрытия, при необходимости досыпают основание дорожного покрытия и уплотняют его до 0,98 - 1,0;

Устраивают постоянное покрытие с водоотводными лотками;

Срезают конусы до проектного очертания, укрепляют их и обочины.

4.10. Отсыпку подходной насыпи и конуса ведут послойно на всю ширину. Толщину слоев принимают в зависимости от используемых механизмов (приложение I к СНиП III -Д.5-73) и уточняют по результатам пробного уплотнения. На подходах толщина уплотняемых слоев (в плотном теле) не должна превышать 30 см, а в стесненных условиях (на конусе) - 10 - 15 см.

Отсыпка последующего слоя допускается только после разравнивания и уплотнения нижележащего слоя до требуемой плотности.

Конусы отсыпают увеличенных по отношению к проектному очертанию размеров (согласно п. 4.13).

4.11. При устройстве щебеночной подушки под лежень переходных плит и при укладке щебеночного основания под плиты особенно тщательно следует уплотнять щебень. Нижний слой щебня толщиной 5 см должен быть втрамбован в грунт.

Щебеночная подушка под лежень устраивается из фракционированного щебня по способу заклинки. Допускается применение гравийного материала с добавлением 30 – 50 % щебня.

4.12. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год.

При строительстве моста в разрыве насыпи, возводимом на грунтах повышенной сжимаемости, полузаглубленные плиты укладывают через год после засыпки разрыва.

4.13. Для ускорения срока осадки (консолидации) основания насыпи могут быть применены специальные технологические (временная пригрузка насыпи слоем грунта) или конструктивные (вертикальные дрены или дренажные прорези, замена грунта основания и т.д.) мероприятия, разработанные в методических рекомендациях СоюздорНИИ х) .

х) Методические указания по проектированию земляного полотна на слабых грунтах". М., 1974 "Методические рекомендации по применению временной пригрузки взамен выторфовывания при сооружении земляного полотна на торфяных болотах", М., 1974; "Методические рекомендации по проектированию и технологий сооружения вертикальных песчаных дрен и песчаных свай при возведении земляного полотна на слабых грунтах". М.,1974.

Метод пригрузки эффективен при устройстве конусов, для чего их отсыпают несколько увеличенных размеров (по отношению к проектному очертанию примерно на 1 м). Через год пригрузочный слой удаляют и укрепляют конусы по их проектному очертанию.

4.14. Перед кратковременным перерывом в работе (1 - 2 суток) по возведению подходной насыпи и конуса необходимо спланировать их поверхности с целью обеспечения водоотвода.

4.15. Досыпать весной подходную насыпь, возведённую в зимних условиях из связных грунтов, допускается только после того, как грунт оттает, просохнет и приобретет устойчивое состояние, что устанавливается по результатам испытаний контрольных образцов грунта.

4.16. Для уплотнения связного, дренирующего грунта и щебеночных оснований при устройстве сопряжений устоев моста с насыпью рекомендуется применять механизмы ударного, виброударного и вибрационного действия. Для уплотнения связных и несвязных грунтов в стесненных местах рекомендуется применять электротрамбовки (ИЭ~4504); для уплотнения несвязных грунтов, гравия и щебня - самопередвигающиеся виброплиты типа SVP и BSD (ГДР).

Контроль качества отсыпки грунтов

4.17. Плотность отсыпаемого грунта необходимо систематически контролировать путем определения его плотности и влажности по отобранным образцам.

Плотность грунта определяет методом кольца с режущим краем, а влажность - методом высушивания до постоянной массы.

4.18. Плотность и влажность грунтов с каждой стороны моста (путепровода) определяют на каждом метре высоты отсыпанной насыпи: на конусе, на расстоянии 2 - 3 м от задней грани устоя и на расстоянии 50 м от моста. В последнем случае плотность и влажность определяет по пробам, взятым примерно на половине высоты насыпи и на расстоянии 0,7 м от ее верха.

Количество проб, взятых из грунта конуса и вблизи устоя со стороны подходов на каждом метре высоты, должно быть не менее 6.

4.19. В процессе уплотнения необходимо следить за равномерностью уплотнения в поперечном и продольном направлениях.

Все данные о степени уплотнения грунтов, толщине слоев и технологии производства работ, полученные в процессе систематического контроля, должны быть занесены в журнал контроля уплотнения насыпей.

Отклонения от требуемого коэффициента, уплотнения в сторону уменьшения допускаются не более, чем у 10 % о бразцов и не должен превышать по абсолютной величине 0,04.

Разница между значениями коэффициента уплотнения, определенными в поперечном сечении верхнего слоя подходной насыпи для дорог с усовершенствованными покрытиями, не должна превышать 0,02.

5. УКРЕПЛЕНИЕ ОТКОСОВ КОНУСОВ

Общие указания

5.1. При оценке местной устойчивости откосов и при выборе типа решетчатых конструкций следует пользоваться "Техническими указаниями по применению сборных решетчатых конструкций для укрепления конусов и откосов земляного полотна" ().

Бетонные монолитные или сборные плиточные крепления должны осуществляться в соответствии с указаниями проекта.

5.2. Во всех случаях крепления откосов конусов (сплошное или решетчатое) у их подошвы необходимо расположить бетонный или железобетонный упор, служащий для воспринятия сдвигающих усилий от собственного веса конструкций крепления.

5.3. Содержание откосов конусов должно осуществляться в соответствии с указаниями действующих нормативных документов.

Подтапливаемые конусы

5.4. Типы укреплений откосов и подошв конусов в пределах подтопления должны приниматься в зависимости от скорости течения воды, высоты волны, длительности подтопления, условий ледохода согласно указаниям пп. 5.5 ÷ 5.8.

5.5. Отметка верха укреплений должна быть выше расчетного уровня воды (с учетом подпора и наката волны) не менее 0,5 и у мостов через большие и средние реки и не менее 0,25 м у мостов через малые водотоки.

5.6. Откосы конусов, находящихся в зоне постоянного подтопления, следует укреплять монолитным бетоном иди бетонными или железобетонными плитами.

Выше уровня постоянного подтопления выбор типа крепления откосов конусов осуществляется в зависимости от гидрогеологических условий.

При малых скоростях течения паводковых вод и незначительном волнобое (высота волны не более 0,3 м) допускается применять для крепления откосов выше уровня постоянного подтопления решетчатые железобетонные конструкции.

Тип заполнения ячеек решетчатых конструкций назначается в зависимости от гидрогеологических условий. При длительности подтопления более 20 суток и скорости течения порядка 1 м/сек ячейки следует заполнять каменной наброской.

5.7. В случае возможного размыва подошвы конуса необходимо предусматривать ее защиту от размыва. Для защиты подошвы конуса следует использовать каменную наброску, гибкие покрытия или комбинированные конструкции (гибкое покрытие совместно с каменной наброской).

5.8. При высоте конусов не более 6 м вне пределов подтопления откосы допускается укреплять сплошной одерновкой.

Неподтапливаемые конусы

5.9. Конуса высотой до 6 м допускается укреплять травосеянием или сплошной одерновкой (в случае обеспечения местной устойчивости откосов).

5.10. При высоких насыпях, а также в случаях, когда травосеяние и одерновка неэффективны и трудоемки, когда грунт конусов легко размываем и склонен к сползанию или пластичному течению с последующим образованием сплывов и оплывин, целесообразно откосы конусов крепить сборными решетчатыми конструкциями (табл. 14).

5.11. Откосы конусов путепроводов рекомендуется крепить решетчатыми конструкциями по варианту № 1 б , 2, 4 (табл. 14). Ячейки следует заполнять растительным грунтом с последующим гидропосевом трав, а в неблагоприятных для прорастания травы условиях - местными естественными материалами (гравийно-песчаными, торфо-песчаными смесями, мелким камнем и т.п.).

Длину стальных штырей в конструкциях крепления по вариантам № 2 и 4назначают равной 0,5 м, а размер ячеек 1,5×1,5 м. Длину железобетонных свай (вариант № l б ) - 1 м.

5.12. Откосыконусов путепроводов, поверхностный слой грунтов которых склонен в весенний период к быстрому переходу в текучее состояние с образованием оплывов и оплывин глубиной до 0,5 м, следует укреплять решетчатой конструкцией по варианту № 1 а и 4.

Длину стальных штырей в варианте № 4 назначат равной 0,8 м, размер ячеек 1×1 м. Длину железобетонных свай (вариант 1 а ) 1 м.

Ячейки заполняет местным непучинистым грунтом с последующим гидропосевом, каменной наброской гравием, гравийно-песчаными смесями.

5.13. Работы по изготовлению сборных элементов и монтажу решетчатых конструкций должны выполняться согласно указаниям .


Переход пути с подходов на мост должен быть нормальным, без впадин и просадок под поездами.

Просадка пути в этих местах наблюдается главным образом при слабых, неутрамбованных насыпях, а также при неудовлетворительных устоях в виде шпальных клеток, ряжей и рам, заложенных на плохо подготовленном основании. Осадке грунта за устоями способствуют, а иногда служат основной причиной, недостаточное заведение устоев в насыпь, отсутствие или неудовлетворительная конструкция закладных щитов, неспланированные крутые и неукреплённые откосы конусов.

Несвоевременное устранение просадок пути отражается не только на безопасности движения проходящего поезда, но является причиной дальнейшего прогрессивного расстройства сопряжения моста с насыпью в связи с увеличением толчков при резких провалах колёсных пар поезда.

Задняя грань устоя, независимо от его конструкции, должна входить в насыпь не менее чем на 0,75 м.

В то же время пролётные строения и опорные брусья, а также насадки или верхний ряд брусьев опоры и подферменные камни для возможности осмотра должны быть обнажены от грунта с устройством закладного щита (фиг. 20). Закладной щит должен быть антисептирован, имея в виду интенсивное его гниение и передачу гнили на соседние деревянные элементы пролётных строений и опор. Стенка закладного щита во избежание просыпания балласта за ним не должна иметь щелей.

При малой длине устоя, не позволяющей заделать его в насыпь, на указанную величину требуется увеличить крутизну откоса конусов путём досыпки (фиг. 21) и более солидного их укрепления, например, мощением в плетнях.

Просадка пути над устоями по мере её образования должна устраняться путём укладки нашпальников толщиной, равной полной величине просадки. При значительной просадке, требующей укладки двух и более шпал или брусьев по высоте, последние должны укладываться вперевязку, аналогично устройству клеток с закреплением брусьев скобами против взаимного перемещения. Просадка пути над земляным полотном устраняется досыпкой балласта, а в зимний период для подъёмки пути применяют в качестве временной меры нашпальники.

При осадке временных устоев, превышающей осадку насыпи за ними, как и при осадке надстроек на подферменных площадках массивных устоев, наблюдается повисание лёгких пакетов на рельсах, представляющее серьёзную опасность для излома рельсов под поездом. Во избежание этого необходимо своевременно устранять не только остаточную, но и упругую осадку конструкций относительно рядом расположенного участка пути на более жёстком основании. Устранение осадок достигается, в частности, путём соответствующей и тщательной подклинки пролётных строений.

В плане переход пути с подходов на мост должен быть прямолинейным. Переходные кривые должны располагаться на удалении не менее 20 м от закладного щита устоя. Если расстояние от круговой кривой до моста недостаточно для укладки нормальной переходной кривой, длина последней сокращается настолько, чтобы сопряжение её с прямолинейной частью пути отстояло от закладного щита устоя не менее чем на 5 м.

Конусы насыпи, выходящие при неизбежности за переднюю грань устоя в русло, во избежание размыва сильным течением должны быть сопряжены с дамбой или при её отсутствии с берегом плавной переходной вставкой с отводом не более 1:10 по горизонтали, Укрепление таких конусов и открсов переходной вставки в пределах возможного затопления с запасом в 1 м должно быть особенно надёжным.

В последние 15-20 лет заметно возросли скорости движения на автомобильных дорогах, при этом обнаружилось, что наиболее резкие толчки автомобили испытывают на подходах к мостам и над водопропускными трубами, где, как правило, наблюдаются просадки покрытия.

По данным некоторых исследователей, неровности дороги и связанные с ними колебания автомобилей приводят к резкому снижению скорости движения производительности транспортных средств, а также к увеличению себестоимости перевозок. Учитывая, что в среднем на каждый километр дороги приходится мост или труба, значительную долю приведенного ущерба следует отнести за счет деформаций насыпи возле искусственных сооружений.

Просадки у мостов и над трубами небезопасны для транспорта, движущегося с большой скоростью. Поэтому при строительстве мостов и путепроводов на автомобильных дорогах особое внимание должно быть уделено сопряжениям их с насыпью.

В связи с этим Союздорнии последние годы проводил исследования по совершенствованию конструкций сопряжений мостов с насыпью с производством инструментальных обследований существующих сооружений.

Настоящие "Методические рекомендации по устройству сопряжений автодорожных мостов и путепроводов с насыпью" составлены на основе этих исследований, в них приводятся необходимые мероприятия по совершенствованию конструкций сопряжений мостов и путепроводов с насыпью и технология их строительства; причины деформаций дорожных покрытий возле мостов.

Необходимые условия проектирования и строительства сопряжений

1. Главнейшим условием устройства сопряжений моста с насыпью является обеспечение плавности въезда автомобилей с подходов на мост на весь период эксплуатации дороги.

Критерием обеспечения плавности покрытия у моста являются допустимые вертикальные ускорения, которые испытывает автомобиль при проходе неровности. Величины этих ускорений связываются с физиологией человека и с сохранностью перевозимых грузов. Так, при ускорении (0,2 ¸ 0,5) q , где (q - ускорение силы тяжести, равное 9,81 м/сек 2 ) работа в автомобиле невозможна; такое ускорение терпимо в течение одной минуты. Сохранность груза в кузове автомобиля обеспечивается при ускорении, не превышающем (0,6¸ 0,7) q.

При одной и той же неровности величина ускорения будет разной в зависимости от типа автомобиля (легковой, автобус, грузовой), степени его загрузки и скорости движения. Наибольшие ускорения (0,7¸ 1,0) q допускают для грузовых автомобилей, эксплуатируемых в тяжелых дорожных условиях.

2. Неровность характеризуют углами перелома профиля покрытия. В частности, при въезде на мост по наклонной переходной плите автомобиль испытывает толчки на двух переломах профиля: у начала переходной плиты (вогнутый угол перелома) и у конца ее - на устое (выпуклый угол перелома). При скорости движения легкового автомобиля 60 км/час вогнутый угол перелома допустим до 12 ‰; при скорости 100 км/час он не должен превышать 5 ‰.

* Причины деформаций дорожного покрытия возле мостов пояснены в приложении 1 .

3. Для обеспечения плавного въезда автомобиля на мост при устройстве сопряжения его с насыпью необходимо:

а) обеспечить надлежащую плотность грунтов земляного полотна (коэффициент уплотнения грунтов при оптимальной влажности не должен быть менее 0,98-1,0);

б) устроить надежный отвод поверхностных вод с покрытия и из тела земляного полотна, что достигается применением дренирующей засыпки за опорами и в конусах, дренажных слоев под покрытием, устройством бортовых лотков и противофильтрационной защиты покрытия и обочин в пределах сопряжения;

в) выдержать земляное полотно до укладки покрытия не менее года, в течение которого произойдут основные осадки тела и основания насыпи;

г) уложить переходные плиты длиной, достаточной для перекрытия зоны образования местных просадок и для обеспечения плавного сопряжения проезжей части моста с дорожным покрытием.

4. Сопряжения проектируют в соответствии с "Проектом конструкций сопряжений мостов и путепроводов с насыпью", разработанным ГПИ "Союздорпроект" (рабочие чертежи, инв. № 20296-М) и утвержденным Минтрансстроем для опытного применения в 1971-1973 гг. Могут быть также использованы "Нормали сопряжений", разработанные Гипроавтотрансом Министерства строительства и эксплуатации автомобильных дорог РСФСР в 1969 г. (серия 3.503-16).

5. Для проектирования сопряжения необходимы следующие данные:

инженерно-геологический разрез грунтов, слагающих основание насыпи вблизи моста, с физико-механическими характеристиками их (в том числе компрессионные кривые), необходимыми для прогноза осадки основания;

высота насыпи, ширина ее поверху и заложение откосов;

физико-механические характеристики грунтов, применяемых для отсыпки насыпи (в том числе для дренирующей засыпки за опорами и конусов);

конструкция дорожной одежды.

6. Конечную осадку уплотненного земляного полотна принимают в зависимости от грунтов и высоты насыпи по табл. 1 (данные В.Д. Казарновского и Н.И. Вельмакиной), а конечную осадку основания насыпи рассчитывают по известным способам механики грунтов ("Методические указания по проектированию земляного полотна на слабых грунтах", М., Оргтрансстрой, 1968).

Таблица 1

Грунты насыпи

Осадка насыпи, % Н нас при высоте насыпи, м

до 6

до 12

до 24

Глины

0,6-0,8

1,0-1,3

1,9-2,2

Суглинки

Супеси

При расчетах осадок на второй год после отсыпки земляного полотна можно принимать осадку тела насыпи 50 %, а основания - 75 % от полной.

Конструкции сопряжений

7. В конструкцию сопряжений входит часть земляного полотна за береговой опорой моста (отсыпаемая из дренирующего грунта), заканчивающаяся объемлющим опору конусом. Дорожное покрытие в этом месте устраивают в виде переходных плит.

8. В зависимости от материала покрытия подходов применяют три типа переходных плит: при цементобетонном покрытии - поверхностные плиты (рис. 1, а), при асфальтобетонном - полузаглубленные и заглубленные (рис. 1, б, в).

9. Полузаглубленные плиты применяют при асфальтобетонных покрытиях, устраиваемых на жестком и полужестком основаниях. К жесткому относится цементобетонное основание; к полужесткому - основания из каменных материалов, укрепленных цементом, гранулированным доменным шлаком, молотым шлаком, золой уноса и др.

10. Заглубленные плиты укладывают при асфальтобетонных покрытиях, устраиваемых на нежестких основаниях: основания из битумоминеральных материалов, из слабых каменных материалов или щебня из шлака, обработанных жидким битумом, из каменных материалов или щебня из шлака с розливом битума или обработанных битумом методом пропитки.

11. Глубину укладки от поверхности покрытия до верха переходной плиты у опирания ее на шкафную стенку (а) и на конце плиты (б) принимают по табл. 2.

Таблица 2

Рис.1. Конструкция сопряжения моста с насыпью:

а - при цементобетонном покрытии: б и в - при асфальтобетонном покрытии (б - полузаглубленная,. в - заглубленная плита); 1 - промежуточная плита; 2 - переходная плита; 3 - крупно- и среднезернистый песок; 4 - дренирующий грунт, 5 - гравийно-щебеночная подушка; 6-укрепленный грунт или асфальтобетон

12. Длину переходных плит назначают в зависимости от ожидаемых осадок тела и основания земляного полотна.

При недостаточности данных о физико-механических характеристиках грунтов длину плит принимают в зависимости от высоты насыпи и гидрогеологических условий ее основания по табл. 3.

Таблица 3

Высота насыпи, м

Длина плит, м, при грунтах основания насыпи

малосжимаемых

повышенной сжимаемости

Более 8

К малосжимаемым грунтам (см. табл. 3) относятся

пески влажные и насыщенные водой, супеси слабовлажные, суглинки твердопластичные и т.п.; к грунтам повышенной сжимаемости - супеси влажные, суглинки тугопластичные и т.п.

13. Наклон переходных плит (вогнутый угол перелома) после окончания осадок тела и основания насыпи не должен превышать величин, указанных в п. 1.

14. При слабых глинистых грунтах в основании насыпи проезжей части на участке переходных плит и прилегающей части подхода придается строительный подъем по треугольнику. Максимальная ордината строительного подъема располагается над концом переходной плиты (над лежнем) и принимается равной ориентировочно 0,7 % от высоты насыпи. Разгон строительного подъема в сторону от моста осуществляется на длине, равной двум высотам насыпи.

При устройстве поверхностных плит строительный подъем достигается повышенным положением лежня. При полузаглубленных и заглубленных плитах строительный подъем устраивается за счет разной толщины основания покрытия.

15. Переходные плиты устраивают либо сборными, либо сборно-монолитными (поверхностные плиты - только сборно-монолитными); с точки зрения водонепроницаемости покрытия и меньшего веса блоков предпочтительнее применение сборно-монолитных плит.

Наружным концом переходные плиты опираются на лежень - обязательный конструктивный элемент при сборных плитах, укладываемый на тщательно уплотненную гравийно-щебеночную подушку толщиной не менее 0,4 м. Сборные плиты объединяются между собой шпоночным швом с постановкой проволочной спирали. Сверху швы между плитами заполняют битумной мастикой.

16. Поверхности переходных плит, соприкасающиеся с землей, и лежень должны быть покрыты обмазочной гидроизоляцией.

17. Для устройства дренирующей засыпки за опорами и конусов применяют грунты и материалы, не увеличивающиеся в объеме при замерзании: крупный и средний песок, мелкий непылеватый песок (частиц менее 0,1 мм не более 25 %), шлак металлургический. Коэффициент фильтрации дренирующего грунта после уплотнения до коэффициента К = 0,98 должен быть не менее 2 - 3 м/сутки.

18. В пределах переходных плит дорожное покрытие должно быть водонепроницаемым (из двух слоев асфальтобетона общей толщиной не менее 7 см), устраиваемым в соответствии с «Рекомендациями по устройству асфальтобетонных покрытий повышенной водонепроницаемости на мостах» (Союздорнии, 1966).

19. При сборно-монолитных плитах поверхностного типа взамен укладки слоев асфальтобетона для изготовления верхней (монолитной) части плиты используют бетон повышенной плотности с воздухововлекающими, газообразующими или уплотняющими добавками, вводимыми с водой затворения согласно требованиям ВСН 85-68 .

20. Поверхностные воды с покрытия должны быть отведены за пределы сопряжений продольными лотками и сброшены по поперечным лоткам, устраиваемым на откосе насыпи. Для этого насыпь возле мостов на протяжении 20 м уширяют по 0,75 м с каждой стороны.

21. Обочины земляного полотна в пределах переходных плит плюс 4 м укрепляют асфальтобетоном или грунтом, обработанным вяжущим.

22. Объемы работ на устройство одного сопряжения для габарита моста Г-9 при разных типах покрытия и длине переходных плит 4 и 6 м (проект Союздорпроекта 1970 г.) приведены в табл. 4.

Таблица 4

Наименование элементов конструкции

Объем работ при длине плит, м, для типа покрытия

асфальтобетонного

цементобетонного

Сборный или сборно-монолитный железобетон М-300, м 3 .

15,5

24,4

15,5

24,4

Покрытие проезжей части, м

Гравийно-щебеночная подушка под лежень, м 3

Укрепленный грунт обочин, м 3.

Технология работ

23. Строительство береговых опор мостов и путепроводов должно опережать возведение земляного полотна, устройство которого производится без разрыва потока линейных земляных работ. Это требование распространяется и на крупные мосты с длительными сроками производства работ.

24. При свайно-эстакадной конструкции моста рекомендуется предварительно (до забивки свай) отсыпать часть насыпи из дренирующего грунта. Это позволит сократить разрыв между сроком окончания сооружения земляного полотна подходов и сроком строительства моста. Размеры призмы из дренирующего грунта поверху должны быть достаточными для обеспечения фронта работ уплотняющих машин и установки копра.

25. Сопряжения строят в четыре этапа:

а) При свайных опорах (рис. 2) отсыпают призму из дренирующего грунта с послойным уплотнением до коэффициента 0,98-1,0 м и забивают в нее сваи береговой опоры. При высоте насыпи до 3 м высота призмы принимается на 2 м меньше, т.е. Н нас - 2 м, а при высоте насыпи 4 - 6 м высота призмы на 3 м меньше, т.е. Н нас - 3 м.

При высоте насыпи более 6 м высота призмы определяется наличием копрового оборудования - возможностью погружения концов свай на глубину не менее 4 м ниже подошвы призмы.

б) При стоечных опорах (рис. 2, б) и опорах других конструкций возводится фундамент и основная часть стоечной опоры.

II этап. Земляное полотно подходов на всю высоту возводят сразу же после сооружения береговых опор. Вблизи моста земляное полотно и конуса отсыпают из дренирующего грунта с послойным его уплотнением малогабаритными механизмами, в удалении (2 м и более) - местным грунтом, уплотняемым тяжелыми машинами.

Рис. 2. Схемы технологической последовательности работ при устройстве сопряжений:

а - при свайных береговых опорах моста; б - при стоечных опорах;

1-стреловый кран с копровым оборудованием; 2-дренируюшнй грунт; 3-переходная плита; 4-подушка под лежень; 5-временное щебеночное покрытие; 6-зона уплотнения малогабаритными механизмами; 7-то же тяжелыми уплотняющими машинами

Одновременно отсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит. Осуществляют систематический контроль за уплотнением, отбором проб и определением влажности и плотности грунта вблизи моста, на конусе и в 50 м от моста и регистрируют в "Журнале контроля уплотнения".

После возведения земляного полотна на всю высоту дальнейшую последовательность работ в III и IV этапах принимают в зависимости от типа покрытия (типа переходных плит).

а) Цементобетонное покрытие - поверхностные плиты. В пределах плит плюс 8 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня и укладывают переходные плиты. В пределах переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

а) Цементобетонное покрытие - поверхностные плиты. Удаляют верхний загрязненный слой временного покрытия; при необходимости досыпают основание дорожной одежды до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня, укладывают переходные и промежуточные плиты и постоянное цементобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Удаляют верхний загрязненный слой временного покрытия; досыпают основание дорожного покрытия до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Укладывают постоянное асфальтобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

Составляют акт на скрытые работы по устройству сопряжений (приложение 2).

26. Строительство береговых опор в прогалах земляного полотна допускается как исключение при надлежащем технико-экономическом обосновании такого решения. При этом размеры прогала в насыпи для обеспечения равномерной осадки основания земляного полотна на подходах к мосту должны быть достаточно большими - не менее двух высот насыпи в каждую сторону от моста. Грунт для засыпки прогала (за пределами дренирующей засыпки) должен быть однородным с грунтом прилегающей насыпи.

27. Грунт дренирующей засыпки и конусов уплотняют при оптимальной влажности послойно до коэффициента уплотнения 0,98¸ 1,0. Толщину слоев принимают в зависимости от используемых механизмов (см. табл. 22 ВСН 97-63). При ручном уплотнении толщина слоев должна быть не более 10-15 см.

При наличии водоемов вблизи трассы целесообразно грунт дренирующей засыпки и конусов перед уплотнением поливать водой, увеличивая влажность грунта против оптимальной на 20 %. При этом можно несколько увеличить толщину уплотняемых слоев.

Систематически контролировать уплотнение путем отбора проб и определения плотности и влажности грунта. Плотность грунта определяют методом кольца с режущим краем, а влажность - методом высушивания до постоянного веса.

Плотность и влажность грунтов с каждой стороны моста определяют на каждом метре высоты отсыпанной насыпи в трех местах: 1) на расстоянии 2-3 м от береговой опоры; 2) на конусе и 3) на расстоянии 50 м от моста. В последнем случае плотность и влажность определяют по двум пробам, взятым на горизонте, примерно равным половине высоты насыпи, и на 0,7 м от ее верха.

28. При устройстве щебеночной подушки под лежень переходных плит и щебеночного основания под плиты особое внимание следует обратить на тщательное уплотнение щебня. Нижний слой щебня толщиной 6 см должен быть втрамбован в грунт. Контроль качества уплотнения щебеночных оснований осуществляют в соответствии с указаниями § 6,6 - 6,9 СНиП III-Д.5-62.

29. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные и заглубленные переходные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год. В случае постройки моста в прогале насыпи, возводимой на грунтах повышенной сжимаемости, полузаглубленные и заглубленные плиты укладывают через год после засыпки прогала.

При возведении насыпей на сжимаемых грунтах и необходимости открыть движение до истечения годовой выдержки земляного полотна с разрешения инстанции, утвердившей проект, допускается:

устройство гравийного или щебеночного покрытия на подходах к мосту (на длине не менее двух высот насыпи) с укладкой переходных плит после досыпки и доуплотнения верхней части насыпи через год;

временная укладка переходных плит поверхностного типа с последующей съемкой их через год для досыпки и доуплотнения верхней части насыпи и установкой плит в проектное положение.

В обоих случаях в сметах на строительство объектов должны быть предусмотрены средства на окончание работ по устройству сопряжения моста (путепровода) с насыпью.

30. Отдельные этапы устройства сопряжения моста с насыпью регистрируют в журнале работ. После окончания работ по устройству сопряжений составляют акт на скрытые работы (см. приложение 2), в котором указывают плотность грунтов земляного полотна, тип и конструкцию переходных плит (поверхностные, заглубленные, полузаглубленные, сборные, сборно-монолитные плиты), длину плит и соответствие выполненных работ проекту.

К акту прикладывают выписку из журнала контроля уплотнения грунта и нивелировочные профили в пределах длин переходных плит плюс 10 м (с каждой стороны моста), в отметках, увязанных с репером строительства.

Нивелировочные профили прокладывают по оси каждой из полос движения; отметки (в мм) берут на каждом метре длины профиля.

Конструкция сопряжения моста с насыпью должна быть показана на исполнительном чертеже общего вида моста (путепровода).

После сдачи моста в эксплуатацию строительные, эксплуатационные и проектные организации в течение 3 лет и более ведут наблюдения за состоянием конструкций сопряжений. Материалы наблюдений и предложения по совершенствованию конструкций для обобщения направляются в Союздорнии.

ПРИЛОЖЕНИЯ

Приложение 1

ПРИЧИНЫ ДЕФОРМАЦИЙ ДОРОЖНОГО ПОКРЫТИЯ ВОЗЛЕ МОСТОВ

Земляное полотно автомобильных дорог испытывает деформации, возникающие вследствие уплотнения (консолидации) грунтов как самого тела насыпи, так и ее основания. Этот вид деформаций, проявляющихся на всем протяжении дороги, принято называть общими осадками земляного полотна.

Кроме деформаций консолидации под действием колесной нагрузки, при определенных условиях в верхней части насыпи возле мостов образуются местные просадки (рис. 1).

Рис. 1. Деформация насыпи возле моста: ΔН = Δ h H + Δ h 0 ;

обычно Δ h 0 > Δ h H ,

где ΔН - полная осадка насыпи;

Δ h H и Δ h 0 - осадка тела и основания насыпи;

Δ h М - местная просадка насыпи возле моста

Общие осадки земляного полотна зависят от рода грунтов, слагающих и подстилающих насыпь, высоты насыпи, дорожно-климатической зоны, степени уплотнения грунтов насыпи, интенсивности обращающихся нагрузок и срока эксплуатации дороги. Местные просадки земляного полотна зависят от тех же факторов и, кроме того, от формы продольного профиля и типа покрытия дороги, от типа береговых опор и крутизны откосов конусов * .

В величинах общих осадок земляного полотна превалирующее место занимают осадки основания насыпи. При существующих требованиях к плотности грунтов насыпи осадки ее основания могут превосходить осадки тела более чем в 3 раза. Так, насыпь высотой до 6 м, сложенная из суглинистых грунтов, уплотненных до К = 1,0, даст осадку около 0,5 % от высоты насыпи, в то время как ее основание, сложенное из твердопластичных суглинков, даст осадку 1,5-2 % от высоты насыпи.

Местные просадки земляного полотна возле мостов меньше общих осадок. В их возникновении, помимо срока эксплуатации дороги, существенную роль играет водно-тепловой режим земляного полотна. На длительно эксплуатирующихся дорогах (10-15 лет), когда деформации консолидации грунтов закончены, величины местных просадок составляют от 0,3 % в IV дорожно-климатической зоне до 1 % от Н нас во II зоне. Форма местных просадок близка к синусоиде, а длина их колеблется от 0,5 до 2,0 от Н нас.

На вогнутом профиле дороги, когда сток воды с покрытия направлен к мосту, местные просадки больше, чем на выпуклом. Это свидетельствует о необходимости обязательного водоотвода с покрытия и с обочин дороги возле моста.

* Журавлев М.М. Сопряжение моста с насыпью. - "Автомобильные дороги", 1968, № 11.

Местные просадки зависят от типа береговых опор моста, они больше при массивных устоях с обратными стенками или при устоях со сплошными заборными стенками. Это объясняется нарушением дренирования воды из тела насыпи в сторону отверстия моста, которое создает такие опоры.

Менее устойчивые конуса, с крутым заложением откосов, также увеличивают местные просадки.

Формирование общих и местных деформаций земляного полотна возле мостов связано со временем.

Общие осадки тела и основания земляного полотна происходят неравномерно, они более интенсивны в первые месяцы после возведения насыпи, затем интенсивность их падает. При наиболее часто употребляемых в дорожном строительстве грунтах (пылеватые супеси и суглинки) общие осадки в первый год после возведения насыпи достигают 70-80 % от полной величины осадки. На 2-й год осадка насыпи и основания составляет примерно 15-20 %, а оставшиеся 5-10 % приходятся на 3-5-й год эксплуатации дороги.

На слабых глинистых основаниях, насыщенных водой, осадки насыпи могут растянуться на значительно больший срок, иногда исчисляемый десятилетиями.

В противоположность общим осадкам земляного полотна местные просадки возникают периодически (обычно весной), что объясняется максимальной влажностью оттаивающего грунтового основания покрытия в этот период года.

В результате общих и местных деформаций насыпи, если не принимать необходимых мер, дорожное покрытие возле мостов разрушается, образуя просадки и неровности.

Эксплуатационные организации ликвидируют просадки укладкой дополнительных слоев асфальтобетона. На следующий год или через год просадки возобновляются. По мере ремонта покрытия асфальтобетон погружается в тело земляного полотна. На некоторых длительно эксплуатирующихся дорогах общая толщина асфальтобетона возле мостов достигла 50-100 см (рис. 2) * .

Рис. 2. Местная просадка насыпи возле одного из мостов на дороге Москва-Симферополь:

1-асфальтобетон (за срок эксплуатации 17 лет толщина слоя достигла 50 см); 2-буровые скважины

До настоящего времени сопряжения мостов и путепроводов с насыпью устраивали либо с применением коротких (1,5-2,0 м) переходных плит, либо без переходных плит - с устройством клинообразного утолщения щебеночного основания покрытия. Плиты такой длины недостаточны для перекрытия активной зоны образования местных просадок, а клинообразные утолщения основания покрытия быстро деформируются, образуя перед мостом порожек.

* Журавлев М.М. Исследование причин расстройства сопряжений автодорожных мостов с насыпями. - Сб. "Труды Союздорнии", вып. 42, М., 1970.

Во многих случаях подходы к мостам отсыпаются из местных недренирующих грунтов без надлежащего их уплотнения. Часто нарушается технологическая последовательность строительных работ: земляное полотно возводится с опережением строительства моста, т.е. мост строится в прогале насыпи. Такая последовательность работ вызывает возле моста неравномерные осадки основания земляного полотна.

Грубейшим нарушением технологии работ является устройство переходных плит и покрытия на подходах к мостам сразу после отсыпки насыпи (или засыпки прогала), когда деформации консолидации грунтов наиболее интенсивны. В результате этого переходные плиты своим наружным концом резко опускаются и теряют свое назначение.

Бортовые лотки на обочинах земляного полотна при вогнутом профиле дороги устраиваются лишь в редких случаях. При отсутствии таких лотков поверхностные воды устремляются по покрытию к мосту, увлажняют земляное полотно, размывают его откосы и конуса, чем нарушается устойчивость насыпи возле моста.

Таким образом, почти единственной мерой предупреждения просадок покрытия возле мостов до настоящего времени являлось применение переходных плит длиной 1,5 - 2 м и в последнее время Г-образных плит длиной 3 м X . Последний тип плит, помимо недостаточной длины, дает также значительные раскрытия деформационного шва на береговой опоре.

Отмеченные недостатки конструктивных решений и технологии работ приводят к деформации узла сопряжения моста с насыпью. В особенности деформации покрытия велики у мостов, сопряжения которых выполнены без переходных плит, с устройством лишь щебеночного клина. Например, на подготовленной в 1968 г. к сдаче дороге Тамбов-Первомайский из-за больших деформаций покрытия возле мостов пришлось выставить предупреждающие знаки о неровностях на дороге, а затем производить реконструкцию узлов сопряжений путем укладки переходных плит.

X Исключение составляет применение переходных плит длиной 5,0 м на шести мостах второй очереди строительства Московской кольцевой дороги (1961 г.), что по сравнению с плитами длиной 2 м значительно повысило ровность покрытия.

Приложение 2

на скрытые работы по устройству сопряжений с насыпью моста через реку_____________на км _______пк ________ дороги ______________________

«___»______19 ____ г Поселок___________________________________________________

Мы, нижеподписавшиеся, представители ________________________________ составили настоящий акт в том, что «____»__________с.г. произведено освидетельствование и испытание грунтов земляного полотна на подходах к мосту, в результате установлено следующее:

1. Насыпь подхода со стороны _________________отсыпана в ___________ (месяц) ___________19 ____ г. из грунтов ______________________________. Возле береговых опор часть насыпи отсыпана ____________ 19 ____г. из дренирующего грунта ________________________________(наименование грунта) с коэффициентом фильтрации ______________________ м/сут.

Уплотнение грунтов производилось слоями по ____ см ________________ (наименование механизма) __________________________________.

Коэффициент уплотнения не менее: в расстоянии 2-3 м от береговой опоры ____________; на конусе______________ в расстоянии 50 м от моста ______________ (см. прилагаемую выписку из журнала контроля уплотнения).

2. Насыпь подхода со стороны ________________________________________________

(аналогичный текст, как в п. 1)________________________________________________

Уплотнение щебеночной подушки под лежень и щебеночного основания под переходные плиты осуществлялось _______________________________________(наименование механизма).

На основании произведенного освидетельствования считать полотно подходов к мосту подготовленным для укладки переходных плит.

3. Переходные плиты длиной _______ м поверхностного, полузаглубленного, заглубленного типа (ненужное зачеркнуть), уложены _________________19 __ г.

______________________________________________________________________________

(отразить установку штырей, заделку швов и омоноличивание элементов).

Приложения: 1. Выписка из журнала контроля уплотнения грунта на _______листах.

2. Нивелировочные профили сопряжений на _________ листах.

Приложение 3

При устройстве рекомендуемых типов сопряжений снизится себестоимость перевозок грузов за счет повышения скоростей на подходах к мостам. Годовой выигрыш себестоимости перевозок на один мост ΔЭ 1 , можно определить, используя формулу В.Ф. Бабкова *

где коэффициент K б - отношение скорости на участке снижения к средней скорости автомобиля (V m =50 км/час) принят равным 0,6;

N - средняя интенсивность движения, равная 2000 авт/сутки;

L - длина подходов к мосту, равная 0,3 км;

r - стоимость пробега 1 автомобиля, принятая 0,20 руб/км (при средней грузоподъемности, средних значениях коэффициентов использования грузоподъемности и пробега автомобилей γβq = 2,9 и себестоимости перевозок - 5,3 коп/ткм);

Т раб.= количество рабочих дней автомобиля в году, равное 275.

В связи с ускорением доставки грузов будет получен эффект в сфере народного хозяйства. Этот эффект можно оценить по формуле

Принципы реконструкции дорог. - * Автомобильные дороги", 1969, № 11.

где 0,6 - коэффициент, учитывающий долю товарных грузов и грузов краткосрочного хранения (по А.Б. Меерсону);

Ц - средняя цена 1 т грузовой массы, равная 420 руб;

Q г - годовое количество грузов- Q г =N γβqT раб - подсчитано при ранее принятых значениях;

V m = 50 км/час;

V 0 = 25 км/час;

L = 0,3 км;

Е н - нормативный коэффициент эффективности капиталовложений.

Кроме перечисленного выше, эксплуатационные организации снизят расходы на ежегодный ремонт покрытия возле мостов ΔЭ 3 , которые, по данным обследования Союздорнии, на 1 мост составляют 90 руб/год.

С другой стороны, применение новых сопряжений по сравнению со старыми типами (плиты длиной 2 м) вызовет удорожание строительства (см. таблицу).

Наименование материалов и работ

Объемы работ, м 3 , при сопряжениях

Удорожание работ, тыс. руб. при новых типах, для плит:

старых

новых, для плит

4-м

6-м

4-м

6-м

Железобетон

48,8

Подушка под лежень

Грунт, укрепленный вяжущим

Итого: удорожание, тыс. руб.

Коэффициент эффективности капиталовложений при устройстве рекомендуемых типов сопряжений определяют при возрастании грузооборота на дороге по прямолинейной зависимости Э t = Э 0 (1 + at ) , в которой параметр a = 0,13 принят по статистическим данным; t -рассматриваемый отрезок времени, годы. Расчетный год определения затрат:

где года < Т н = 8,3 года

Приведенные данные свидетельствуют об эффективности применения новых конструкций сопряжения мостов и путепроводов с насыпью.

Изобретение предназначено для сопряжения моста с насыпью преимущественно автомобильных дорог и может быть применено в мостостроении. Способ изготовления сопряжения проезжей части моста с насыпью включает уплотнение грунта в теле насыпи и ее конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста. Новым является то, что подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты. Технический результат изобретения состоит в уменьшении просадки насыпи под переходной плитой за счет снижения горизонтального смещения подушки и дренирующего материала. 7 з.п. ф-лы, 6 ил.

Предлагаемое изобретение предназначено для устройства сопряжения проезжей части моста с насыпью преимущественно автомобильных дорог и может быть применено в мостостроении.

При сооружении мостов на автодорогах ниже III категории сопряжение моста с насыпью не устраивается (это касается и пешеходных мостов). Со временем в месте сопряжения образуется просадка насыпи, что ухудшает въезд и съезд с моста. Устройство сопряжения исключило бы этот недостаток, однако это связано со сравнительно большими затратами при использовании существующей технологии изготовления сопряжения проезжей части моста с насыпью.

На автодорогах I-III категорий для обеспечения плавного перехода от упругих деформаций насыпи к более жестким деформациям пролетного строения как по их величине, так и по скорости протекания в местах сопряжения моста с насыпью создают специальные переходные участки в виде переходных плит, отмосток и подушек из щебеночных и песчано-гравийных материалов, которые необходимо послойно уплотнять, (Мосты и сооружения на дорогах. Под ред. П.М.Саламахина. М., Транспорт, 1991, ч.1, стр.226). Переходные плиты одним концом опираются на выступ шкафной стенки, а другим - на железобетонный лежень. Плиты укладывают на подушку из дренирующего материала с уклоном 1:10 в сторону насыпи и закрепляют штырями.

Операции, характеризующие описанный выше способ изготовления сопряжения проезжей части моста с насыпью, таковы: осуществляют отсыпку грунта в тело насыпи и ее конусов с послойным уплотнением, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки в теле насыпи по длине, равной длине переходной плиты с переменной жесткостью, убывающей от моста вдоль насыпи.

Недостатками известного способа сопряжения моста с насыпью являются:

а) возможность сдвига и деформации подушки и дренирующего материала в горизонтальном направлении, что, в конечном счете, приводит к осадке переходной плиты;

б) сложность конструкции сопряжения, связанная с необходимостью использования бетонного лежня, подушек из щебеночных и песчано-гравийных материалов, которые необходимо послойно уплотнять. Это приводит к сравнительно быстрым просадкам насыпи под лежнем. Кроме того, резко усложняется и удорожается производство работ по устройству сопряжения моста с насыпью.

Известен способ сопряжения моста с насыпью на автомобильных дорогах (см., например: Б.И.Скрябин. Сопряжения моста с насыпью на автомобильных дорогах. М., издательство ГУШОСДОРа, 1939, стр.16-17), заключающийся в установке деревянного щита с наклоном 4° в сторону моста, который сверху засыпают песком с устройством мостовой. Недостатком известного способа является небольшая долговечность, связанная с использованием деревянного щита, который под действием нагрузки деформируется, а под действием влаги - гниет. Кроме того, происходит осадка не только под действием вертикальных сил, возникающих от воздействия транспорта, съезжающего или въезжающего на мост, но и от горизонтального перемещения грунта насыпи. Перемещения от вертикальных сил накапливаются, образуя остаточные деформации. Накопление таких деформаций будет происходить тем интенсивнее, чем больше разница в жесткости езды по покрытию и мосту. Определенную роль в формировании деформаций насыпи возле мостов играют конусы земляного полотна. Устойчивость конуса зависит от свойств грунта, применяемого при его отсыпке (дренирующая способность, сохранение объема при промерзании), и угла заложения, что не обеспечивается известным способом сопряжения моста с насыпью.

Известен способ сопряжения моста с насыпью (см., например: М.М.Журавлев. Сопряжение моста с насыпью. Автомобильные дороги, №11, 1968, стр.16-17), заключающийся в устройстве засыпки грунта в прогале между опорой и телом насыпи, его уплотнении, осуществлении дренирующей засыпки и ленточного дренажа. Зону активных деформаций насыпи перекрывают специальными переходными плитами достаточной длины. Для асфальтобетонного покрытия используются заглубленные переходные плиты, для цементобетонного - поверхностные плиты.

Недостатком известного способа является необходимость устраивания повышенной водопроницаемости. Кроме того, рассматриваемый способ сопряжения не обеспечивает переменную жесткость сопряжения от насыпи к мосту. Необходимо при этом береговые опоры выбирать такого типа, чтобы вода из грунтов земляного полотна могла бы отводиться в сторону отверстия моста, то есть имеются ограничения по отношению к выбору береговых опор. Основным недостатком описываемого способа являются осадки под действием вертикальных сил за счет горизонтального смещения подушки и дренирующего материала.

Наиболее близким аналогом по технической сущности и достигаемому результату является способ изготовления сопряжения проезжей части автодорожных мостов с насыпью (М.М.Журавлев. Сопряжение проезжей части автодорожных мостов с насыпью. М., Транспорт, 1976, стр.49-50), заключающийся в отсыпке гравийно-щебеночной подушки, толщину которой определяют расчетом, устройстве дренажных слоев и водоотводных лотков на покрытии, укладке на гравийно-щебеночную подушку лежня, для опоры одного конца переходной плиты, послойном уплотнении грунта в теле насыпи и ее конусов, устройстве гравийно-щебеночной подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, укладке переходной плиты с углом подъема в сторону моста. Другим концом переходная плита опирается на прилив шкафной стенки (проект Союздорпроекта) или на ее верх (проект Гипроавтотранса). Последнее решение менее эффективно, так как из-за небольшого поворота переходной плиты в вертикальной плоскости происходит расстройство деформационного шва. Шарнирный поворот плит на опоре обеспечивается штыревым соединением.

Недостатками известного способа изготовления сопряжения проезжей части моста с насыпью являются:

а) возможность сдвига и деформации подушки и дренирующего материала в горизонтальном направлении, что приводит к осадке переходной плиты;

б) сложность конструкции сопряжения, связанная с необходимостью использования бетонного лежня, подушек из щебеночного и дренирующего материала, которые необходимо послойно уплотнять;

в) при горизонтальном смещении устоя типовое сопряжение полностью приходит в негодность, так как переходные плиты сдвигаются со шкафной стенки.

Технической задачей, решаемой предлагаемым изобретением, является уменьшение осадки насыпи под переходной плитой, снижение горизонтального смещения подушки и дренирующего материала, упрощение конструкции сопряжения и технологии его изготовления.

Это достигается за счет того, что в способе изготовления сопряжения проезжей части автодорожного моста с насыпью, включающем уплотнение грунта в теле насыпи и его конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста, подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты. Под средней жесткостью насыпи понимается средневзвешенная жесткость, определяемая как соотношение жесткости армоэлемента и окружающего грунта в единице объема насыпи. Такая совокупность операций позволяет использовать набивные сваи вместо укладки переходной плиты (предполагается, что непосредственно на сваях может быть уложено дорожное покрытие), или создавать переменную жесткость насыпи под переходной плитой, обеспечивая жесткость грунта в насыпи в вертикальном направлении за счет несущей способности набивной сваи и в горизонтальном направлении за счет жесткости тела самой сваи. Кроме того, жесткость грунта в теле насыпи повышается за счет глубинного уплотнения грунта, происходящего при формовании набивной сваи. Поверхностное уплотнение верхнего слоя насыпи и набивных свай создает равномерную плотность верхней части набивных свай и окружающего их грунта, что, в конечном итоге, повышает надежность работы конструкции сопряжения моста с насыпью.

Среднюю жесткость насыпи выполняют путем уменьшения количества набивных свай, размещенных в параллельных рядах, по мере удаления от устоя моста. Такая операция позволяет выдержать необходимую среднюю жесткость насыпи, не прибегая к послойной отсыпке гравийно-щебеночных слоев с их послойным уплотнением.

Набивные сваи выполняют с переменной несущей способностью путем изменения их длин и/или диаметров в каждом последующем ряду от устоя моста. Изменение длин набивных свай в каждом последующем ряду от устоя моста обеспечивает переменную жесткость насыпи от опоры моста до края переходной плиты и одновременно такая операция эффективна в технологическом плане, так как позволяет использовать одни и те же средства механизации, например, пневмопробойник, для достижения требуемой жесткости вне зависимости от расположения сваи относительно опоры моста.

Достижение переменной несущей способности набивных свай за счет одновременного изменения их длин и диаметров в каждом последующем ряду от устоев моста позволяет оптимизировать параметры сваи при минимальных технологических затратах и обеспечивать переменную жесткость грунта в насыпи под переходной плитой.

Кроме того, соседние сваи в каждом ряду насыпи выполняют разного диаметра и длины. Такая совокупность операций позволяет оптимизировать технологический процесс, то есть при наличии пневмопробойников разного диаметра можно формовать сваи разного диаметра, достигая необходимую жесткость в соответствующей полосе насыпи.

Также набивные сваи выполняют по контуру насыпи, поперек насыпи у устоя моста и на некотором расстоянии от него. Такая операция существенно повышает жесткость насыпи в горизонтальном направлении, исключает необходимость устройства лежня и повышает устойчивость конуса и откосов.

Также каждый последующий ряд набивных свай размещают соосно предшествующему ряду или в шахматном порядке. Размещение каждого ряда набивных свай соосно предшествующему ряду позволяет достичь максимальной прочности насыпи в месте опирания на нее переходной плиты, а их размещение в шахматном порядке позволяет оптимизировать прочность насыпи и дренирующую ее способность.

Кроме того, переходную плиту монтируют в верхней части набивных свай и выполняют ее съемной. Такая конструкция сопряжения обеспечивает передачу возникающих сил от съезжающего или въезжающего на мост транспорта непосредственно на сваю, что повышает надежность работы сопряжения проезжей части автомобильной дороги и моста, обеспечивая снижение горизонтального смещения подушки и дренирующего материала и существенно снижая затраты на последующий его ремонт.

Также переходную плиту выполняют за одно целое с набивными сваями. Такая операция существенно повысит прочность сопряжения проезжей части насыпи с мостом, что особо важно для мостов I-III категории с интенсивным движением транспорта.

Сущность предлагаемого технического решения иллюстрируется примером конкретного исполнения и прилагаемыми чертежами. На фиг.1 приведена схема предлагаемого способа сопряжения моста с насыпью в продольном сечении; на фиг.2 - вид сверху (переходная плита снята) однорядное размещение набивных свай; фиг.3 - двухрядное размещение набивных свай, когда набивные сваи располагаются соосно, в рядах (вид сверху при снятой переходной плите); фиг.4 - двухрядное размещение набивных свай, когда набивные сваи располагаются в шахматном порядке (вид сверху при снятой переходной плите); фиг.5 - размещение набивных свай по всей площади, занимаемой переходной плитой (вид сверху при снятой переходной плите); фиг.6 - процесс формования набивных свай пневмопробойником.

Сущность предлагаемого способа изготовления сопряжения проезжей части автомобильных мостов с насыпью заключается в следующем.

В насыпи 1 формуют набивные сваи 2 (фиг.1). Их располагают вдоль откоса насыпи 1 и поперек ее (фиг.2-5) с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи. Поперечные набивные сваи образуют (совместно с грунтом, уложенным в насыпи 1) полосы со средней жесткостью, определяемой жесткостью грунта и набивных свай. Поперечные ряды располагают у устоя 3 моста 4 и у конца переходной плиты 5, причем средняя жесткость полосы насыпи 1, расположенной непосредственно у устоя 3 моста 4, больше средней жесткости полосы у противоположного от устоя моста края переходной плиты 5. При выполнении переходной плиты 5 съемной она передним концом укладывается на прилив шкафной стенки или устой 3 моста 4, как на фиг.1, а задним концом - на поперечный ряд набивных свай 2, служащий как бы лежнем для удержания переходной плиты 5. Передний ряд набивных свай 2 служит для повышения устойчивости конуса 6 насыпи 1, а следовательно, и устойчивости самой насыпи 1. Набивные сваи 2 можно изготавливать с переменной несущей способностью, причем максимальная несущая способность у ряда свай 2, которые размещены у устоя 3 моста 4, и постепенно их несущая способность снижается по мере удаления от устоя 3 моста 4. Изменение несущей способности набивных свай 2 можно достичь тремя путями. Первый путь - это при одинаковом диаметре набивной сваи 2 изготовлять их разной глубины. Как известно, несущая способность набивной сваи 2 зависит от площади боковой поверхности, поэтому набивные сваи 2 одинакового диаметра, но разной длины, будут иметь разную несущую способность. Второй путь - изготовление набивных свай 2 одинаковой длины, но разного диаметра. Результат тот же. Возможно использовать и комбинированный метод, то есть изготовлять набивные сваи 2 разного диаметра и разной длины, причем это можно выполнять в разных рядах, когда в одном ряду несущая способность набивной сваи изменяется за счет ее длины, в другом ряду - за счет диаметра, или в каждом ряду. В последнем случае набивные сваи 2 чередуются, то есть одна свая формуется длинная, но малого диаметра, другая - короткая, но большого диаметра, Главное, чтобы средняя жесткость полосы насыпи 1 соответствовала бы расчетной. Оптимальное решение зависит от производственных условий (необходимой средней плотности насыпи, физико-механических свойств отсыпанного в насыпь 1 грунта, его дренажных свойств, наличия техники, позволяющей изготовлять набивные сваи необходимой длины и диаметра) и минимизации трудовых и финансовых затрат. Набивные сваи 2 можно располагать в один ряд по контуру (фиг.2) или в несколько рядов, располагая их соосно друг относительно друга в горизонтальной плоскости (фиг.3), или в шахматном порядке (фиг.4). Возможен вариант расположения набивных свай 2 по всей горизонтальной поверхности сопряжения, как показано на фиг.5. Этот случай целесообразно применять при строительстве мостов, интенсивность движения по которым мала. При этом можно вообще обойтись без использования переходных плит. Непосредственно на верхнюю часть набивных свай укладывается дорожное покрытие. В этом случае сами набивные сваи выполняют функцию переходной плиты. Если мост более высокой категории с интенсивным движением транспорта, то возможна заливка бетоном верхней части набивных свай с последующим бетонированием переходной плиты. В итоге, переходная плита будет выполнена с набивными сваями как единое целое. Возможно выполнение съемной переходной плиты, которая свободно укладывается на торцы набивных свай (эти операции описаны выше). Выбор того или иного способа изготовления сопряжения (в виде укладки покрытия на поле набивных свай, объединения бетонной плиты с оголовками свай, устройства съемной переходной плиты) зависит от категории автомобильной дороги и моста, условий их эксплуатации, производственных условий.

При формировании набивных свай верхняя их часть становится разуплотненной. Свойства грунта вокруг свай также меняются из-за возможного подъема поверхности насыпи при формовании набивных свай. Поэтому целесообразно провести поверхностное уплотнение для выравнивания свойств грунта, прилегающего к поверхности и верхней части набивных свай, перед укладкой переходной плиты.

Оптимальное расположение набивных свай 2 зависит от производственных условий, выбранного диаметра набивных свай 2, площади сопряжения моста 4 с насыпью 1, то есть от длины переходной плиты. Важным моментом является обеспечение возможности удаления воды, которая образуется в результате дождевых осадков или таяния снега, сквозь зазоры между соседними набивными сваями 2, что достигается выбором расстояния между ними.

Метод изготовления набивных свай 2 может быть любым. Наиболее целесообразно использовать для этой цели пневмопробойник - самодвижущееся устройство ударного действия для формования скважин в уплотняемом грунте. На фиг.6 показана технология поэтапного процесса формования набивной сваи 2. На фиг.6 а показана операция по внедрению пневмопробойника 7 в насыпь 1. После прохождения скважины 8 необходимой длины пневмопробойник извлекается из нее за счет реверсирования своего хода. Образованная скважина 8 (фиг.6б) имеет прочную стенку за счет радиального сдвига грунта и уплотнения последнего. В результате происходит радиальное уплотнение грунта на объем, занимаемый объемом скважины 8. Следующей операцией является заполнение скважины 8 инертным материалом 9, в качестве которого может быть использованы песок, щебень и т.д. В принципе на этом можно ограничиться, т.к. набивная свая 2 уже образована. Однако если необходимо образовать скважину, а следовательно, и набивную сваю большего диаметра при использовании пневмопробойника 7 того же диаметра (той же мощности), то процесс формования набивной сваи 2 необходимо продолжить. По заполненной инертным материалом 9 скважине 8 осуществляют повторную проходку (фиг.6г), при этом образуется скважина 8 того же диаметра, что и диаметр корпуса пневмопробойника 7. Стенки скважины 8 больше уплотнены, чем окружающий ее грунт 1, то есть образуется как бы кольцевой слой с более уплотненным грунтом. Затем полость скважины 8 заполняют инертным материалом (фиг.6е), в результате чего образуется набивная свая 2 большего диаметра, а следовательно, с большей несущей способностью. Можно вновь осуществить проходку пневмопробойником 7 по заполненной скважине (фиг.6ж) и далее процесс можно повторить, начиная с операции, показанной на фиг.6г. В результате образуется набивная свая 2 еще большего диаметра. Практически была получена набивная свая 2 диаметром 500 мм при пятиразовой проходке пневмопробойником ИП4603 диаметром 130 мм. Скважину большего диаметра можно также образовать, используя расширители с более мощным пневмопробойником. Здесь вопрос наличия более мощных пневмопробойников и минимизации трудовых и капитальных затрат.

После формования сетки набивных свай 2 и выравнивания свойств верхней их части и окружающего грунта на торцы набивных свай укладывается переходная плита 5, которая в дальнейшем и опирается на них.

Круглая свая имеет одинаковую жесткость во всех направлениях, поэтому она обеспечивает одинаковое сопротивление при нагрузках в любом направлении. Это свойство обеспечивает как устойчивость откосам и конусам, так и необходимую жесткость насыпи 1 под переходной плитой 5, что повышает долговечность сопряжения моста 4 с насыпью 1. Расстояние между соседними набивными сваями 2 подбирается таким образом, чтобы обеспечивался дренаж воды, скопившейся в теле насыпи 1. Уменьшение жесткости поперечных полос насыпи 1 можно достичь за счет уменьшения несущей способности набивных свай 2 от моста 4 в сторону насыпи 1, следовательно, обеспечивается плавный переход деформаций как по величине, так и по скорости их протекания.

1. Способ изготовления сопряжения проезжей части моста с насыпью, включающий уплотнение грунта в теле насыпи и ее конусов, устройство дренажных слоев и водоотводных лотков на покрытии, создание подушки с переменной жесткостью, убывающей от моста вдоль насыпи по длине, равной длине переходной плиты, устройство переходной плиты с углом подъема в сторону моста, отличающийся тем, что подушку в теле насыпи выполняют путем формования рядов набивных свай, размещенных вдоль и поперек насыпи с поверхностным уплотнением верхней части набивных свай и верхнего слоя насыпи, причем поперечные набивные сваи образуют совместно с грунтом, уложенным в насыпи, полосы со средней жесткостью, при этом среднюю жесткость уменьшают от максимальной у устоя моста до минимальной у противоположного от устоя моста края переходной плиты.

2. Способ по п.1, отличающийся тем, что среднюю жесткость насыпи выполняют путем уменьшения количества набивных свай в параллельных рядах по мере удаления от устоя моста.

3. Способ по любому из пп.1 и 2, отличающийся тем, что набивные сваи выполняют с переменной несущей способностью путем изменения их длин и/или диаметров в каждом последующем ряду от устоя моста.

4. Способ по любому из пп.1-3, отличающийся тем, что соседние сваи в каждом ряду насыпи выполняют разного диаметра и длины.

5. Способ по п.1, отличающийся тем, что набивные сваи выполняют по контуру насыпи – поперек насыпи у устоя моста и на некотором расстоянии от него.

6. Способ по любому из пп.1-4, отличающийся тем, что каждый последующий ряд набивных свай размещают соосно предшествующему ряду или в шахматном порядке.

7. Способ по любому из пп.1-6, отличающийся тем, что переходную плиту монтируют в верхней части набивных свай и выполняют ее съемной.

8. Способ по любому из пп.1-6, отличающийся тем, что переходную плиту выполняют за одно целое с набивными сваями.

Способ изготовления сопряжения проезжей части моста с насыпью

Сопряжение моста с насыпью содержит пролетное строение, полотно проезжей части, опору, шкафную часть и подходную часть насыпи. Новым в предлагаемой полезной модели является то, что шкафная часть выполнена отдельно от опоры и жестко присоединена к торцу пролетного строения. Технический результат полезной модели состоит в повышении долговечности конструкции сопряжения моста с насыпью подходов.

Полезная модель относится к области мостостроения и может быть использована при сооружении мостов малых пролетов.

Известно сопряжение моста с насыпью, содержащее пролетное строение, полотно проезжей части, опору, шкафную часть и подходную часть насыпи (Г.К.Евграфов. Мосты на железных дорогах. М., 1955, с.180, рис.243).

Недостатком технического решения являются значительные затраты железобетона, поскольку шкафная часть совмещена с опорной и выполнена большой длины по направлению продольной оси моста и соответствует горизонтальной проекции конуса насыпи.

Известно сопряжение моста с насыпью, содержащее пролетное строение, полотно проезжей части, опору, шкафную часть и подходную часть насыпи. Опора и шкафная часть выполнены совместно и являются маломассивными, требующими небольшого расхода материала. (Б.П.Назаренко. Железобетонные мосты. М., Высшая школа, 1970, рис.128, б).

Недостатком конструкции является то, что между шкафной частью и торцом пролетного строения предусмотрен зазор, что требует устройства в этом месте деформационного шва. Однако деформационный шов быстро выходит из строя и его лучше устраивать за пределами моста.

Предлагаемым изобретением решается задача повышения долговечности конструкции сопряжения моста с насыпью подходов.

Для достижения указанного технического результата в конструкции сопряжения моста с насыпью, содержащей пролетное строение, полотно проезжей части, опору, шкафную часть и подходную часть насыпи, шкафная часть выполнена отдельно от опоры и жестко присоединена к торцу пролетного строения.

Сущность полезной модели пояснена чертежами, где

на фиг.1 представлен разрез по продольной оси ребра пролетного строения (разрез А-А на фиг.2);

на фиг.2 представлен разрез по задней грани шкафной части (разрез Б-Б на фиг.1).

Сопряжение моста с насыпью содержит пролетное строение 1, полотно проезжей части, состоящее из железобетонной плиты 2 и асфальтобетона 3, опору, состоящую из лежня 4 и опорного бруса 5, шкафную часть 6 и подходную часть насыпи 7. Шкафная часть 6 выполнена отдельно от опоры и жестко присоединена к торцу пролетного строения, например, с помощью анкеров 8. Железобетонная плита 2 полотна проезжей части продолжена за пределы моста и опирается на лежень 9, на который опирается и плита 10 проезжей части со стороны подходной части насыпи. Шкафная часть 6 имеет выемку в месте опирания на лежень 4.

Сопряжение моста с насыпью работает следующим образом. Нагрузка, воспринимаемая грунтом 7 от давления плит 2 и 10, передается на нижележащие грунты основания а горизонтальная составляющая

передается на шкафную часть 6. Последняя предохраняет торцевую часть пролетного строения от засыпки грунтом и обеспечивает возможность осмотра в процессе эксплуатации торцевой части пролетного строения, опорного бруса 5 и лежня 4.

Основным преимуществом предложенной конструкции является отсутствие зазора между шкафной частью и пролетным строением, что неизбежно потребовало бы устройства деформационного шва. Однако деформационный шов в пределах моста быстро разрушается. Устройство этого шва за пределами моста (как это показано на фиг.1) позволяет существенно упростить шов и сделать его более долговечным.

Эффективность данной конструкции достигается в мостах малых пролетов, когда мост и насыпь работают как единая геотехническая система. В этом случае отпадает необходимость в классических опорных частях, а температурные деформации воспринимаются упругостью системы «мост - насыпь».

Эффективность предложенного решения выражается в повышении долговечности системы.

Сопряжение моста с насыпью, содержащее пролетное строение, полотно проезжей части, опору, шкафную часть и подходную часть насыпи, отличающееся тем, что шкафная часть выполнена отдельно от опоры и жестко присоединена к торцу пролетного строения.

Популярное