» »

Планета, похожая на луну. Какое небесное тело крупнее - Луна или Меркурий? Зачем могут пригодится эти небесные тела землянам? Что больше меркурий или луна

06.12.2023

Чьи инфракрасные датчики обнаружили спектр, характерный для испарившейся породы, а также смеси расплавленной и вновь застывшей лавы. Проведенный астрономами анализ показал, что это, видимо, стало результатом крупной космической катастрофы, мощного столкновения двух тел, одно из которых было размерами, по меньшей мере, с Луну (масса Луны — ок. 74 000 000 000 млрд т), а другое — с Меркурий (его масса — ок. 330 000 000 000 млрд т). Несколько тысяч лет назад они врезались друг в друга на большой скорости. Меньшее тело в результате было полностью уничтожено, основная часть его массы испарилась или заполнила окружающее пространство быстро остывающими брызгами раскаленной лавы. Примерно так.

Наблюдение затронуло систему звезды HD 172555, весьма молодой, всего 12 млн лет от роду (Солнцу 4,5 млрд лет), находящейся в каких-то 100 световых годах от Земли, в южном созвездии Павлин . С помощью бортовой аппаратуры телескопа Spitzer получив спектральные данные, ученые определили на них линии, характерные для аморфных кремнийсодержащих минералов — иначе говоря, плавленого стекла, а также газообразного моноксида кремния (то, как анализируются спектры, мы популярно объясняли в заметке «Рассматриваем картинку »). Оценив массу этих веществ, удалось показать, что в сумме она более чем вдвое превысила массу Луны. А чтобы расплавить и испарить столько породы, энергия столкновения должна была быть просто ужасной. По расчетам ученых, тела должны были врезаться друг в друга на скорости более 10 км/с.

«Для того, чтобы каменистая порода расплавилась и испарилась, скорость столкновения должна быть очень велика, — говорит астроном Кэри Лиссэ (Carey Lisse), один из авторов работы, раскрывшей подробности этого события, — Подобные явления происходят действительно редко и проходят быстро, но играют критическую роль в процессе формирования планет, подобных нашей Земле, и спутников, подобных Луне. Нам по‑настоящему повезло заметить одно из них».

По мнению астронома и его коллег, это столкновение во многом напоминало то, которое некогда — около 4 млрд лет назад — привело к появлению у нашей планеты ее единственного естественного спутника (об этой популярной сегодня теории «ударного» происхождения Луны лучше всего прочесть в статье «Прекрасная Селена »). Считается, что тогда в Землю врезалось тело размерами примерно с Марс. Удар был настолько сильный, что поверхность нашей (еще молодой) планеты расплавилась, а выброшенные в космос фрагменты усеяли все околоземное пространство. За долгие годы они притянулись, образовав единое тело — Луну. То, что сегодня наблюдается в той звездной системе, близко к той катастрофе и по характеру, и по масштабам. Возможно, через миллионы лет и там появится новая луна.

Ранняя история Солнечной системы была полна подобными катастрофами. К примеру, ученые полагают, что именно они привели к тому, что Меркурий потерял свою внешнюю оболочку, Уран вращается, «лежа на боку», а Венера — в обратном направлении. Все это — издержки процесса роста, совсем как «взбрыки» в подростковом возрасте.

Образование

Какое небесное тело крупнее - Луна или Меркурий? Зачем могут пригодится эти небесные тела землянам?

23 марта 2017

Меркурий - одна из самых небольших по своим размерам планета в Солнечной системе, расположенная к тому же на самом ближайшем расстоянии от Солнца. Луна же является небесным телом, которое находится относительно недалеко от Земли. Всего за всю историю человечества на Луне побывали 12 человек. До Меркурия спутник летит в течение шести месяцев. До Луны сегодня добираются всего лишь за трое суток. Чем же интересны оба этих небесных тела для астрономов и других ученых?

Зачем нужны землянам Луна и Меркурий?

Самый часто задаваемый относительно них вопрос звучит следующим образом: «Какое небесное тело крупнее - Луна или Меркурий?». Отчего это так много значит для ученых? Дело в том, что Меркурий является самым ближайшим кандидатом для того, чтобы его колонизировать. Подобно Луне, Меркурий не окружен атмосферой. Сутки здесь длятся очень долго и составляют целых 59 земных суток.

Планета вращается вокруг своей оси очень медленно. Но не только вопрос о том, какое небесное тело крупнее - Луна или Меркурий - интересует ученых в связи с возможной колонизацией. Дело в том, что освоению Меркурия может помешать его близость к главному светилу нашей системы. Но ученые предполагают, что на полюсах планеты могут иметься ледяные шапки, могущие облегчить процесс колонизации.

Самая близкая к Солнцу планета

С другой стороны, непосредственная близость к звезде может гарантировать постоянные поставки солнечной энергии, в случае если ученым все же удастся колонизировать планету и построить на ней энергетические станции. Исследователи полагают, что по причине небольшого наклона Меркурия на его территории могут существовать участки, называемые «пиками вечного света». Они и представляют главный интерес для ученых. В почве Меркурия находятся большие залежи руды, которые могут быть использованы для создания космических станций. А также его почвы богаты элементом Гелием-3, который также мог бы стать источником неиссякаемой энергии.

Затруднения в изучении Меркурия

Меркурий всегда было очень тяжело изучать астрономам. В первую очередь из-за того, что планету заслоняют яркие лучи главного светила системы. Именно поэтому ученые очень долго не могли определить, какое небесное тело крупнее - Луна или Меркурий. Планета, вращающаяся в окрестностях Солнца, всегда оказывается повернутой к светилу одной и той же стороной. Несмотря на это, в прошлом ученые пытались составлять карту обратной стороны Меркурия. Но она не пользовалась большой популярностью, и к ней относились со скепсисом. Очень долго было крайне тяжело определить, какое небесное тело крупнее - Луна или Меркурий. Фото этих планет позволяли делать вывод, что они примерно одинаковы.

Кратеры на Луне и Меркурии

Одними из первых астрономических открытий были открытия кратеров на Марсе и Луне. Тогда ученые ожидали, что их окажется предостаточно и на Меркурии. Ведь эта планета по своим размерам находится между Луной и Марсом. Луна или Меркурий - что крупнее и какое это может иметь отношение к кратерам? Все это стало известно после того, как Меркурий два раза облетела межпланетная станция под названием «Маринер-10». Она сделала огромное количество фотоснимков, а также были составлены подробнейшие карты Меркурия. Теперь знаний о планете было столько же, сколько и о спутнике Земли.

Оказалось, что кратеров на территории Меркурия столько же, сколько и на Луне. А поверхность подобного рода имела точно такое же происхождение - во всем были виноваты бесчисленные метеоритные потоки и мощные вулканы. Даже ученый не смог бы по фотографиям отличить поверхность Меркурия от поверхности спутника Земли.

Ямки от метеоритов на этих небесных телах образуются по причине отсутствия атмосферы, которая могла бы смягчить удары извне. Раньше ученые считали, что Меркурий все же обладает атмосферой, только очень разреженной. Сила тяжести планеты не может удерживать на ее поверхности атмосферу, которая могла бы быть подобна земной. Но все же приборы станции «Маринер-10» показали, что у поверхности планеты концентрация газов больше, чем в космосе.

Возможна ли колонизация Луны?

Первым препятствием, которое встает на пути мечтающих заселить спутник Земли, является его постоянная подверженность метеоритным бомбардировкам. Атаки метеоритов, как выяснили ученые, происходят в сто раз чаще, чем предполагалось ранее. На поверхности Луны постоянно происходят различные изменения. Кратеры метеоритов могут в своем диаметре составлять от нескольких сантиметров до 40 метров.

Однако в 2014 году Роскосмосом было сделано заявление о том, что уже к 2030 году Россия начнет программу по добыче полезных ископаемых на Луне. В отношении таких программ вопрос о том, какое небесное тело крупнее - Луна или Меркурий - отходит на второй план. Ведь пока что это заявление было сделано только в отношении спутника Земли. Колонизировать Меркурий Россия пока не собирается. Планы насчет добычи полезных ископаемых на Луне были озвучены в День космонавтики в 2014 году. Для этого в РАН уже разрабатывается научная программа.

Луна или Меркурий - что крупнее и какая планета выигрышнее для колонизации?

На Меркурии температура составляет около 430 °С. И она может снижаться до -180 °С. Ночью на поверхности спутника Земли температура также опускается вплоть до -153 °С, а днем может достигать +120 °С. В этом отношении для колонизации эти планеты пока что одинаково непригодны. Какое небесное тело крупнее - Луна или Меркурий? Ответ будет следующим: крупнее все-таки планета. Меркурий больше Луны по своим размерам. Диаметр Луны составляет 3474 км, а диаметр Меркурия - 4879 км. Поэтому пока что мечты расселиться за пределами Земли для человечества остаются фантастикой.

В разделе на вопрос Чем отличается поверхность Меркурия от Луны? заданный автором Resist лучший ответ это Меркурий во многом сходен с Луной: его поверхность изрыта кратерами и очень стара; там отсутствуют тектонические плиты. С другой стороны Меркурий значительно плотнее Луны (5.43 г/см3 против 3.34 г/см3 у Луны) . Меркурий второе по плотности большое тело в солнечной системе после Земли. Высокая плотность Земли частично объясняется гравитационным сжатием, если бы не это, то Меркурий был бы плотнее Земли. Данный факт указывает на то, что плотное железное ядро у Меркурия больше Земного, и возможно составляет большую часть планеты. Из-за этого Меркурий имеет относительно тонкую силикатную мантию и кору. Основное место внутри Меркурия занимает большое железное ядро радиусом 1800-1900 км. Толщина поверхностных силикатных оболочек (аналогичные Земной мантии и коре) составляет 500-600 км. По крайней мере часть ядра вероятно расплавлена. Меркурий обладает очень тонкой атмосферой, состоящей из атомов выбитых из его поверхности солнечным ветром. Поскольку Меркурий очень горячий, эти атомы быстро уходят в космическое пространство. Таким образом, в отличие от Земли и Венеры, чьи атмосферы устойчивы, атмосфера Меркурия постоянно обновляется. На поверхности Меркурия видны огромные откосы, некоторые до сотен километров длиной и более трех километров высотой. Некоторые из этих обрывов пересекают кратеры и другие детали рельефа таким оьразом, что позволяет сделать вывод о их происхождении в результате сжатия. Можно считать, что площадь поверхности Меркурия сократилась на 0.1% (или, что радиус планеты уменьшилмя на 1 км) . Одной из самых больших деталей поверхности Меркурия является Caloris Basin (справа) . Он около 1300 км в диаметре и подобен большим бассейнам (морям) на Луне. Как и моря на Луне он образовался в результате сильного столкновения на заре образования солнечной системы. Это же столкновение, по-видимому, ответственно за необычный ландшафт строго на противоположной стороне планеты

Меркурий принадлежит к группе из четырех планет земного типа, расположенных близко к Солнцу. Он находится на самом коротком расстоянии от светила и недалеко от Земли. Увидеть планету непросто: она никогда не уходит от Солнца на угол больше чем на 28°, а обычно меньше. Это удаление называется элонгацией. Но и в наибольшей элонгации (18-28°) Меркурий можно наблюдать только на фоне светлого сумеречного неба в течение короткого времени на восходе (рис. справа) или после захода Солнца. Минимальное расстояние до Меркурия всего 80 млн км, но наблюдать его в это время не удается не только из-за яркого света Солнца, но и потому, что к Земле в этот период обращена его ночная сторона. «Счастлив астроном, Меркурий увидевший», - значится в средневековых астрономических наставлениях. Тем не менее заметить планету нетрудно, если только помнить короткие календарные периоды ее видимости, знать, где ее искать, и учитывать, что видна она очень недолго, теоретически не более 1,5 ч, а практически намного меньше. Условия видимости повторяются несколько раз в год. С помощью телескопа Меркурий можно увидеть только в дневное время, причем распознать какие-либо детали на нем практически не удается. Угол, под которым планета видна в квадратуре (половина диска), составляет в среднем 7,3 угл. с. «Хорошим» в наземных обсерваториях считается телескоп с разрешением около одной угловой секунды (т.е. его способность разделить точки изображения, разделенные углом в 1 с). Поэтому на фотографических изображениях Меркурий всегда остается небольшим мутным пятнышком. Делу могли бы помочь автоматические орбитальные телескопы, например «Хаббл» (HST), но, по мнению администрации телескопа, если возникнет ошибка в движении инструмента, мощное излучение Солнца может попасть на уникальные приборы и их испортить. Кстати, то же касается наземных астрономических инструментов для работы с Меркурием.

Рельеф Меркурия

Несмотря на то что снимки поверхности Меркурия напоминают «материковые» области Луны, «морей» лунного типа (лавовых), которые так привычны на диске нашего спутника, на данной стороне планеты не оказалось. Луна и Меркурий показаны в одинаковом масштабе на рис вверху, где малоконтрастные детали последнего контрастируют с пятнистой поверхностью Луны.

Поверхность рассматриваемой планеты имеет особенности, присущие только Меркурию. Выделяются несколько характерных типов рельефа. Наиболее древний, насыщенный, - равнина, покрытая бесчисленным количеством перекрывающихся метеоритных кратеров, где удар каждого следующего метеоритного тела приходился на участок, уже многократно изрытый кратерами. Такая поверхность показана на рис., где размер еще различимых деталей составляет 300 м. Солнце светит слева и находится довольно низко над горизонтом. Вся поверхность покрыта сплошной сетью кратеров и кажется не отличимой от материковых районов Луны. Почти все они образовались от падения крупных метеоритных тел в период формирования планеты, около 4 млрд лет назад. Сначала выпадали протопланетные тела (планетезимали) и метеориты самых различных размеров, а потом все более мелкие фрагменты, следами которых покрыто все дно кратера справа. Вместе с тем крупные метеоритные тела порой врезались в поверхность даже на поздней стадии. Так образовался хорошо сохранившийся кратер диаметром 25 км правее и ниже центра снимка. Следов более поздних мелких кратеров его вал не имеет.

Другая отметка последовательности событий видна в левом нижнем углу снимка, где расположен большой шестидесятикилометровый кратер с сильно разрушенным валом. На его дне заметны следы излияния лавы, образовавшей огромный поток, который двигался слева и затвердел, пройдя больше половины диаметра кратера. Извержение происходило уже после выпадения основного объема метеоритного вещества. Вместе с тем редкие и сравнительно мелкие тела выпадали на поверхность лавового натека и после его образования. С большей или меньшей плотностью ударные образования покрывают значительную часть известной ныне поверхности Меркурия. События, оставившие на ней след, в основном происходили 3,9х109 лет назад. Точно так же выглядит поверхность Луны, возраст образцов которой установлен непосредственно.

Кинетическая энергия сталкивавшихся с поверхностью Меркурия протопланетных тел была очень велика. Каждый их удар сопровождался мощным взрывом, энергия которого была заметно выше, чем у обычной взрывчатки с той же массой, что и у метеорита. Интересно, что у лунных кратеров значительно большие диаметры, чем у подобных на Меркурии, образованные такими же по массе метеороидами. Поскольку ускорение свободного падения на Меркурии (3,72 м/c2) выше, чем на Луне (1,62 м/c2), выброшенный при ударах метеоритов материал выпадал не так далеко от центра, как на Луне: при одинаковой энергии взрыва площадь, которую покрывает выброс на Меркурии, в 5 раз меньше, чем на Луне.

Бескратерные равнины или обширные промежутки между кратерами характерны только для Меркурия. Тем не менее, сходство внешнего вида и реголита Луны и Меркурия поразительно. Некоторые меркурианские кратеры имеют систему «лучей», простирающихся на большое расстояние. На Луне, где много таких кратеров, их протяженность гораздо больше из-за меньшего ускорения свободного падения. Например, лучи кратера Тихо уходят за край видимого диска Луны. Известно, что яркость лучей заметно усиливается к полнолунию, а затем ослабевает, что объясняется высокой пористостью материала: Солнце освещает внутренность мелких пор материала лучей, только когда поднимается высоко над горизонтом. Высота гор на Меркурии, вычисленная по длине теней, оказалась меньше, чем на Луне, что вероятно, тоже связано с различием в ускорениях свободного падения. Горы Меркурия достигают 2-4 км, а наибольшая высота лунных Скалистых гор составляет 5,8 км.

Необычная деталь рельефа на Меркурии - эскарп (уступ высотой 2-3 км, разделяющий два в общем ничем не отличающихся района). Протяженность таких обрывов - от сотен до полутысячи километров. Таков эскарп Дискавери. Эскарпы образовались, когда происходило сжатие Меркурия, повлекшее за собой сдвиги и наползание отдельных участков его коры. Подобного явления на Луне не наблюдалось.

Поверхность Меркурия, как и лунная поверхность, лишена ярких цветовых оттенков. Несмотря на сходство рельефа и реголита Луны и Меркурия, поверхность последнего отличается большим своеобразием. Вся видимая сторона Луны покрыта огромными низинами - «морями». А на исследованной Mariner-10 стороне Меркурия морей (т.е. есть равнин или «бассейнов») нет совсем. В этом смысле он скорей напоминает обратную сторону Луны. Здесь единственное образование, которое отдаленно напоминает большое лунное кратерное море - бассейн Caloris Planitia («Море Зноя», или «Море Жары»), часть которого находилась во время миссии Mariner-10 на самом терминаторе (на границе день-ночь). Мозаика из снимков Caloris Planitia.

Луна (слева) и Меркурий в одинаковом масштабе. Поверхности этих двух небесных тел похожи. Изображение Меркурия построено обработкой мозаики из сотен снимков, сделанных видиконной камерой аппарата Mariner-10 в 1974-1975 гг. Сторона Луны, обращенная к Земле, покрыта многочисленными лунными «морями» - равнинами застывшей лавы, извергавшейся во время формирования поверхности Луны (около 3,9 млрд лет назад). Несмотря на сходство поверхности этих тел, на поверхности Меркурия подобных «морей» Mariner-10 не обнаружил.

Выяснилось, что Caloris Planitia -не самый большой бассейн на Меркурии. Гигантское образование такого рода находится на «неизвестной» стороне планеты. За 30 лет, прошедшие после посещения Mariner-10, астрономия продвинулась настолько, что поверхность Меркурия удается исследовать в наземных астрономических наблюдениях. Важнейшую роль в этом сыграли два новшества: приемники излучения ПЗС (приборы с зарядовой связью) и компьютерные средства обработки информации. К тому же ученые теперь смело берутся за проблемы, которые совсем недавно казались такими же безнадежными, как картирование Меркурия наземными средствами.

Отложим немного описание неизвестной стороны планеты, чтобы рассказать, как все это удалось сделать. Наземные наблюдения Меркурия «классическими» методами, по сравнению с изучением других тел Солнечной системы, подвержены многим другим ограничениям. Поскольку наблюдения выполняются в астрономические сумерки или даже на фоне дневного неба, для улучшения отношения сигнал-шум часто используется ближний инфракрасный диапазон, т.к. яркость чистого неба падает с увеличением длины волны, как -4. Время наблюдений в сумерки редко превышает 20-30 мин, причем планета находится невысоко над горизонтом, когда значительная воздушная масса на луче зрения еще больше осложняет задачу. Более или менее продуктивное изучение Меркурия возможно только в горных обсерваториях низких широт. Но на пределе технических возможностей получить изображения планеты с достаточным разрешением наземными техническими и аналитическими средствами все же возможно. Что же касается улучшения качества изображений, ключевой идеей стало использование очень коротких, миллисекундных экспозиций. Одним из первых обширные серии наблюдений Меркурия с ПЗС-приемниками в 1995-2002 гг. выполнил Й. Варелл (J. Warell) в обсерватории на о. Ла Пальма (Канарские острова) на полуметровом солнечном телескопе. Экспозиции были от 25 до 300 мс. Варелл использовал единичные наиболее удачные электронные снимки без их дальнейшего совмещения. Естественно, они уступают изображениям, полученным при совместной обработке больших массивов электронных фотографий.

Уже упоминавшееся разрешение телескопа определяется отношением длины волны к его диаметру - теоретический дифракционный предел, который на длине волны зеленого, например, света, 550 нм, для полутораметрового телескопа должен составлять около 0,1 угловой секунды. Но типичное реальное разрешение оказывается в 9-15 раз хуже дифракционного предела. Оно определяется, главным образом, неспокойствием земной атмосферы и зависит от места наблюдения, времени суток, плотности аэрозольной составляющей (тумана, облаков) и, конечно, зенитного расстояния объекта. Идея метода коротких экспозиций заключается в том, что прибор использует мгновенные прояснения атмосферы, когда изображение четкое и не успевает размыться. Но все не так просто. Атмосферу можно представить себе как множество случайно образовавшихся слабо преломляющих линз неправильной формы, которые возникают и исчезают, искажая фронт приходящей световой волны. Когда астрономы получали снимки небесных тел на фотопластинках, за время экспозиции этот небесный сценарий изменялся десятки раз, а каждая точка неспокойного изображения успевала засветить тысячи зерен фотоэмульсии, размывая снимок. Характерное время, за которое мгновенные оптические свойства атмосферы изменяются, редко бывает меньше 15-20 мс. Если экспозицию сделать короткой, скажем, 3 миллисекунды, среди фотографий попадутся и «хорошие», хотя их будет немного. Уменьшение экспозиции не устраняет искажения, вызываемые нерегулярностями воздушных линз, но существенно уменьшает размытие изображения и позволяет приблизиться к дифракционному пределу. Накопив значительное количество снимков, можно затем выбрать из них изображения с наименьшими искажениями, пригодные для дальнейшей обработки. Это очень трудоемкая операция, особенно если учесть, что сам размер изображения Меркурия обычно составляет всего от 0,2 до 0,5 мм.

Несмотря на всю убедительность основной идеи метода коротких экспозиций, реализовать ее с фотоэмульсиями было невозможно: в реальных условиях наблюдений невысокая фоточувствительность эмульсий требовала минимальных экспозиций в сотни миллисекунд, а то и секунду. Короткие экспозиции стали возможными только с появлением новых детекторов изображений - ПЗС, квантовая эффективность которых достигает 80% и более. Интересно отметить, что сравнительно небольшие телескопы (диаметром 1-2 м) обладают определенными преимуществами при коротких экспозициях, т.к. охватывают меньше атмосферных «линз», но собирают еще достаточно света. Тем не менее, число фотонов, приходящееся на единичный пиксель (элемент изображения) при использовании ПЗС с высоким разрешением, всегда ограничено и подвержено значительным флуктуациям. Поэтому хороший результат можно получить лишь при последующей совместной обработке многих сотен и даже тысяч электронных снимков. А доступное время наблюдений Меркурия настолько ограничено, что экспериментальный материал необходимого объема возможно получить только на достаточно большом инструменте, когда суммарное время экспозиций составляет лишь малую часть всего наблюдательного времени. При очень благоприятных атмосферных условиях до 25% изображений получаются сравнительно четкими.

Результаты наблюдений критично зависят от состояния атмосферы, но характеризовать их можно только после завершения обработки. Начало описываемой работе положила большая удача в наших пробных наблюдениях. 3 ноября 2001 г., в Абастуманской астрофизической обсерватории республики Грузия (41°45’ с.ш., 42°50’ в.д.) с помощью новой ПЗС-камеры, установленной на телескопе диаметром 1,25 м, проводились наблюдения Меркурия в утренней элонгации планеты. Положение планеты в принципе позволяло наблюдать сектор, сфотографированный Mariner-10 в 1974 г. Всю ночь шел сильный дождь, но на рассвете облака разошлись, и при полном безветрии удалось получить серию изображений в ближнем инфракрасном диапазоне, от 700 до 950 нм. После обработки всего полученного массива снимков методами корреляционного совмещения (stacking) было создано разрешенное изображение планеты, обладавшее сходством деталей с фотомозаикой Mariner-10. Более того, очертания небольших образований размерами 150-200 км повторялись на полученном изображении. После подробного анализа результатов сомнений уже не оставалось: благодаря коротким экспозициям и необычному кратковременному прояснению атмосферы удалось получить комбинированные снимки такой четкости, которая соответствует дифракционному пределу инструмента (рис. вверху). В дальнейшем такие благоприятные атмосферные условия встречались нечасто; как правило, требовалось собрать 5-10 тыс. удачных изображений для дальнейшего синтеза изображений.

Корреляционное совмещение

Обработка исходных миллисекундных электронных фотографий планеты весьма трудоемка и отнимает много времени. Она выполняется с помощью специальных компьютерных программ методом корреляционного совмещения и, наряду с операциями «нечеткой маски» и некоторыми математическими приемами, требует выбрать так называемый пилот-файл, что обычно приходится делать вручную. Пилот-файл, или образец, - это наиболее удачный, по мнению обработчика, снимок, который в значительной мере определяет результат достигаемого совмещения. Перебор пилот-файлов многократно увеличивает трудоемкость обработки, т.к. результат становится виден только на заключительных шагах обработки. Пилот-файл должен представлять собой наименее искаженное изображение среди исходного наблюдательного материала. Дальше программы обработки анализируют содержание образца, находят в нем какие-то детали и ищут повторение этих почти незаметных подробностей в тысячах других электронных снимков. Если, исходя из опыта, форму и положение пилот-файла еще можно оценить, то оценка реальности едва различимых деталей находится где-то между изображением и воображением. В ходе настоящей работы было создано несколько программ автоматической обработки. К сожалению, эффективность автоматической программы значительно уступает корреляционному совмещению с ручным отбором.

Сравнение фрагмента изображения, синтезированного по наземным наблюдениям Меркурия, с фотокартой Mariner-10

Каждая точка изображения описывается известной математической функцией распределения интенсивности, которая в центральной части плавно убывает от центра. Обычно «точка» представляется шириной этой функции на уровне 0,7 или 0,5 максимума. Если удалось получить много тысяч исходных электронных снимков, при их обработке можно воспользоваться известными свойствами статистики случайных величин и выбирать «точку» на уровне, например, 0,9 максимума. Тогда разрешение значительно улучшится. Есть и другие приемы, но самым надежным все же остается ручной отбор.

После первой части обработки, несмотря на все приемы, изображение остается как бы размытым. Астрономы давно нашли способ улучшения изображений методом «нечеткой маски». Для этого во времена фотоэмульсий с полученного изображения делали слегка расфокусированный негатив. Затем сквозь него переснимали исходный снимок. Крупные, размытые детали таким образом уходили, а тонкую структуру мелких деталей можно было выделять вплоть до уровня шума. Сегодня эта функция встроена во многие цифровые фотокамеры. «Нечеткая маска» (в виде математической модели) работает и в наших программах обработки, но средство это обоюдоострое. Результат зависит от выбора размера элементов. Если он мал, все низкие пространственные частоты будут потеряны, а изображение станет равномерно серым; например снимок Луны на рис. на стр. 67 станет «слепым». И наоборот, если размер нечеткой маски велик, исчезнут все мелкие детали.

Постоянной проблемой синтеза изображений неизвестной части Меркурия остается доказательство реальности обнаруженных деталей рельефа. Съемкой Mariner-10 были охвачены примерно меридиональные сегменты, 120-190°з.д. и 0-50°з.д. Для этих долгот подтверждение реальности деталей новых снимков можно получить сравнением полученных изображений с фотокартой. Но в остальных случаях доказательством реальности может быть только повторяемость деталей в независимо проведенных наблюдениях. В области долгот 210-350° з.д. поверхность Меркурия была неизвестна, поэтому единственным критерием реальности деталей оставалось их наличие на нескольких изображениях, синтезированных из независимых исходных групп электронных снимков.

В области долгот 210-350°з.д

Наблюдения Меркурия выполнялись в различных обсерваториях, но всегда методом коротких экспозиций. Изображение (рис. вверху справа) построено обработкой результатов наблюдений в вечерней элонгации, проведенных 1-2 мая 2002 г. в обсерватории Скинакас Ираклионского университета (о. Крит, Греция, 24°54’ с.ш., 35°13’ в.д.). Наблюдения выполнялись в ближнем ИК-диапазоне, 690-940 нм с помощью телескопа с диаметром 1.29 м и ПЗС-камеры с размером пикселя 7,4х7,4 мкм. Диск планеты 1-2.05.2002 был виден под углом 7,75 с дуги, с линейным размером 0,37 мм в фокальной плоскости телескопа и соответствовал на ПЗС-матрице всего 50 строкам. 2 мая фаза Меркурия была 97°. Использовались короткие экспозиции, в основном 1 мс.

На рисунке, выше центра, на терминаторе, выделяется крупное темное пятно. Это крупнейший бассейн на Меркурии. В ходе обработки наблюдений автор использовал для этого образования рабочее название - «Бассейн Скинакас» (по имени обсерватории, где был получен исходный материал), отнюдь не претендуя на его узаконивание. (Как известно, всем объектам на поверхности Меркурия Международный астрономический союз присваивает имена писателей, композиторов, художников и т.д.). Тем не менее, название «Бассейн Скинакас» (или «Море Скинакас», или «Бассейн S»), стало упоминаться на ряде конференций и в некоторых статьях. Бассейн S - наиболее крупное образование в области долгот 210-290°з.д. - имеет структуру, более напоминающую некоторые крупнейшие образования на обратной стороне Луны. Бассейн представляет собой, по-видимому, очень старое (возможно, древнейшее) образование на Меркурии, с сильно разрушенными валами, фактически создаваемыми границами других, менее крупных бассейнов. Бассейн Скинакас имеет, по-видимому, структуру, сходную с поверхностью известной по съемке Mariner-10 области Caloris Planitia, имеющей, вероятнее всего, ударное происхождение. На рис. внизу приведен вид Бассейна Скинакас из работы 2003 г. Полного вида бассейна тогда не существовало, поэтому правая (восточная) часть рисунке создана на основе первых публикаций наших наблюдений 2002 г., а левая (западная) была взята из аналогичных публикаций (Dantowitz, et al., 2000; Baumgardner, et al., 2000, Astron J., 2000), где она однажды была представлена фрагментарно. Диаметр внутренней части Бассейна Скинакас около 25° (1060 км). Диаметр различимого внешнего вала вдвое больший. Центр находится примерно у 8°с.ш., 275°з.д. Внутренний вал Бассейна Скинакас обладает более или менее правильной формой. На рисунке сравниваются размеры Бассейна Скинакас и равнины Caloris Planitia, также имеющей двойной вал. Бары показаны в одинаковом масштабе. По диаметру Бассейн Скинакас в 1,5 раза больше, чем Caloris Planitia. Как уже отмечалось, операция «нечеткой маски», требует компромиссного выбора. Поэтому реальный тон района бассейна темнее, чем на рисунке. По его периферии расположены вторичные образования; некоторые из них рассматриваются ниже.

В последующие годы предпринимались новые серии наблюдений; снова использовались телескопы Абастуманской обсерватории и обсерватории Скинакас. Наиболее совершенные изображения удалось получить лишь через 4 года, на основе наблюдений в ноябре 2006 г. в обсерватории САО РАН (Нижний Архыз, Карачаево-Черкесия, 43°39’11”с.ш., 41°26’29”в.д.,), и снова благодаря удачным метеоусловиям. Преимуществом обсерватории САО в отношении наблюдений Меркурия является ее большая высота (2100 м) и сравнительно низкая широта. В числе главных задач новых наблюдений было получение общего вида Бассейна Скинакас, который в это время находился на освещенной стороне планеты. Достигнутый за прошедшие годы прогресс в обработке позволял надеяться на повышение разрешения изображений.

Методом коротких экспозиций в период 20-24 ноября 2006 г. удалось получить более 20 тыс. электронных снимков планеты в утренней элонгации, при «хорошем небе», как говорят астрономы. Угол фазы Меркурия изменялся в пределах от 103° до 80°, область наблюдаемых планетоцентрических долгот была 260-350° з.д. Наблюдения выполнялись с ПЗС камерой на телескопе «Цейсс-1000» в ближнем инфракрасном диапазоне. Диск планеты был виден под углом от 6 до 7 с дуги. Путем обработки большого массива снимков, полученных с миллисекундными экспозициями, удалось получить достаточно четкое синтезированное изображение сектора поверхности Меркурия 260-350°з.д. Кроме Бассейна Скинакас, на синтезированных изображениях выделяется также ряд крупных ударных кратеров разного возраста, и менее крупные образования. Предельное полученное разрешение не хуже формального дифракционного разрешения инструмента, около 80-100 км на поверхности Меркурия. Как и в случае наблюдений 2001 г., хорошие изображения появились при резком изменении метеоусловий (прекращение снежной пурги).

Предварительные результаты обработки наблюдений показаны на рис. вверху слева. Здесь можно видеть, как менялось положение и освещенность Бассейна Скинакас за пять дней. Левые части (а) представляют фазы планеты в указанные даты, справа (б) фазы показаны на глобусе планеты. Наиболее благоприятные метеоусловия наблюдений были 20 и 21 ноября 2006 г. Тогда же наиболее выгодным было и освещение: Солнце стояло низко над горизонтом бассейна, а тени подчеркивали его рельеф. Весь бассейн выделяется на среднем снимке (21 ноября 2006). Помимо бассейна, во всех показанных фазах примерно вдоль меридиана 310°з.д. вытянуты уже упоминавшиеся наиболее светлые кратеры. Самый яркий из них находится в северной части планеты, примерно у 65°с.ш., 330°з.д.

Первым сюрпризом оказалось крупное темное кратерное «море» настоящего лунного типа, обнаруженное на лимбе, южнее экватора. Вдоль лимба, от северного полюса до темного моря, тянется ряд светлых кратеров. На снимках вид Меркурия изменяется каждые сутки, что объясняется его быстрым орбитальным движением. Но не только. Как хорошо известно из лунных наблюдений, вид безатмосферного небесного тела при прохождении квадратуры быстро изменяется из-за так называемого эффекта оппозиции. Было интересно проследить, как трансформируется вид исследуемой планеты в этой выгодной фазе. Фазы Меркурия гораздо сложнее, чем у Луны, потому что его положение, в отличие от последней, не фиксировано и наблюдениям в любой фазе доступны, в принципе, все стороны планеты. В среднем поверхность Меркурия за сутки смещается относительно земного наблюдателя на 5°. Но и это его свойство не остается постоянным: из-за большого эксцентриситета орбиты, в некоторых ее частях, обращение обгоняет вращение планеты и суточное движение поверхности относительно Солнца останавливается и даже возвращается назад. В это время с терминатора Меркурия можно было бы наблюдать странную последовательность: восход и вскоре закат на востоке, снова восход, а затем все повторяется в обратном порядке на западе.

Все подробности лучше видны на комбинированном рис. вверху, где для синтеза левой половины изображения в обработку были включены около 7800 исходных электронных снимков. На сером поле слева показана координатная сетка, а Бассейн Скинакас выделен кружком, что позволяет сравнить повторяющиеся восточные контуры бассейна. Поле бассейна охвачено валом более или менее правильной формы. В меридиональном направлении его протяженность равна 1300 км. Интересно, что по размерам, внутренняя часть бассейна в 1.5 раза превышает крупнейшее лунное Море Дождей, а внешняя имеет масштабы лунного Океана Бурь. В отличие от Бассейна Скинакас и Caloris Planitia, поверхность Моря Дождей представляет собой лавовое поле, формирование которого относится к древней эпохе глобальных лавовых излияний на Луне. Диаметр внешнего вала Бассейна Скинакас - около 0,5 диаметра всей планеты - делает его одним из крупнейших кратерных морей на планетах группы Земли. Нерегулярная форма внешнего вала, сравнительно правильная с восточной стороны, на севере нарушена объектом, с центром, находящимся у 30°с.ш., 280°з.д., а на юге - обширной менее темной областью, которая расположена между 255 и 280°з.д. и доходит до 30°ю.ш.

Меридиан, по которому проходит терминатор на обеих половинах рисунка один и тот же, примерно 270°з.д. Здесь на широте 45-50°ю.ш., находится центр еще одного темного бассейна диаметром около 700 км, повторяющегося в обеих половинах рисунка. Яркий кратер у 65°с.ш., 330°з.д. имеет диаметр 90-100 км; с севера и юга к нему примыкают линейные структуры протяженностью 400-500 км. Такой вид выбросов из ударного кратера, возможно, связан с касательной траекторией ударника. Ограниченное разрешение снимка не позволяет достоверно судить о его деталях; возможно, сам кратер находится на протяженной светлой области.

Как уже отмечалось, выделение подробностей изображений при обработке исходных снимков идет в ущерб низким пространственным частотам. Иными словами, оттенки очень темных или светлых протяженных областей на рисунке приглушены, что позволяет выделить другие детали, например, ударные кратеры средних и крупных размеров. Среди них наиболее заметен пятиугольный 750-километровый кратер с центром у 32°ю.ш., 260°з.д. и примыкающий к нему с севера 650-километровый кратер (рис. справа сверху). Таких кратеров найдено много.

В заключение приводится наиболее удачное изображение сектора 270-350°з.д., полученное методами, которые рассматривались выше, с кропотливым отбором снимков, полученных в моменты наилучшего прояснения (рис. справа). Разрешение составляет 60-70 км на точку. Низкие пространственные частоты здесь подавлены. Изображения а и б отличаются только уровнем контрастности. Наряду с «классическими» ударными кратерами, выбросами и лучами на снимке присутствуют элементы, ранее на других планетах не встречавшиеся. Прежде всего, это четыре или пять серых полос, шириной по 250 и протяженностью до 2000 км. Полосы неким образом связаны с крупными кратерами, но природа их пока неясна. Сам снимок вполне сравним со снимками с космических аппаратов, но стоит несравнимо дешевле. Астрономы-звездники уже всерьез считают метод спеклов (он же метод коротких экспозиций) серьезным конкурентом весьма затратным космическим исследованиям.

В области долгот 210-350°з.д. поверхность Меркурия была неизвестна. Уже упоминалось, что критерием реальности деталей оставалось их наличие на нескольких независимых изображениях. Приведенные выше новые изображения поверхности планеты покрывают почти всю часть поверхности планеты, остававшейся не заснятой камерой Mariner-10, а исследованный сектор 260-350°з.д. обладает более интересным рельефом по сравнению с ранее картированными сравнительно гладкими районами. Если природа возникновения Бассейна Скинакас была подобна лунной, то остается непонятным, почему его границы так резко отличаются от четких очертаний лунных лавовых морей. Относительные скорости импакторов на орбите Меркурия были почти в 1,6 раз выше, чем на орбите Земли/Луны, а энергия соударений была выше в 2,5 раза. Поэтому можно было ожидать, что Бассейн Скинакас и другие крупные темные образования будут иметь столь же резкие очертания, как и лунные бассейны, а бассейн Caloris Planitia является исключением. Но почему-то таких границ нет.

Полученные изображения, как и снимки, сделанные камерами космических аппаратов, указывают на особенности событий на поверхности Меркурия в период максимума ее метеоритной бомбардировки. В какой-то мере эти особенности могут быть связаны с составом и, возможно, строением коры этого небесного тела. Вместе с тем, снимки Меркурия возвращают ученых к давнему и нерешенному вопросу: почему протяженные детали рельефа, такие как лунные «моря» или океаны Земли, распределены по поверхности планетных тел асимметрично и собираются на одной стороне? Как известно, такая же необъясненная асимметрия наблюдается и на других планетах земной группы. Она присутствует и на многих спутниках планет-гигантов, а не только на Луне. По-видимому, то же можно наблюдать и на поверхности Меркурия. Протяженные детали рельефа, такие как Бассейн Скинакас и другие темные бассейны, по планете распределены явно асимметрично и сосредоточены они главным образом в области долгот 250-330°з.д.. Происхождение асимметрии лунного рельефа имеет некоторые особенности, но к рельефу Меркурия и других планет земной группы они не относятся. Что же стоит за этой асимметрией?

Меркурий – ближайшая к Солнцу планета. Она характеризуется параметрами, анализ которых позволяет получить представление о ее внутреннем строении и путях эволюции.

Главным параметром планеты является ее масса. У Меркурия масса равна 0,33×10 27 г, что составляет 1 / 18 массы Земли. Несмотря на небольшие размеры – диаметр 4880 км, радиус 2440 км, – Меркурий имеет необычайно высокую среднюю плотность – 5,42 г/см 3 , что значительно выше плотности Луны, размеры которой ненамного меньше Меркурия.

Расстояние от Солнца до Меркурия в перигелии 47 млн. км, в афелии – 70 млн. км, среднее орбитальное – 53 млн. км. Таким образом, Меркурий имеет одну из самых вытянутых эллиптических орбит среди планет Солнечной системы. Полный оборот вокруг Солнца он делает за 88 земных суток. Вокруг своей оси Меркурий вращается очень медленно – один полный оборот за 58,65 суток. Тем не менее американская межпланетная станция «Маринер-10» в 1974 г., сделав множество фотоснимков поверхности планеты, обнаружила у нее слабое магнитное поле напряженностью порядка 100 нТ, которое в 100 раз меньше земного магнитного поля. Ввиду близости Солнца поверхность дневной стороны планеты буквально выжигается – температура поднимается до 437°С. На теневой стороне она падает до -173°С. Солнечная постоянная Q 0 = 60 кал/см 2 ×мин, что в 29 раз больше, чем получает Земля от Солнца. Никакие живые организмы земного типа не могут существовать и развиваться в условиях меркурианской температуры. Нет здесь и воды – ни жидкой, ни атмосферной, как нет и самой атмосферы. Это мертвая безжизненная планета, поверхность которой местами, возможно, тускло блестит свинцовыми озерами.

Поверхность Меркурия имеет низкую отражательную способность (альбедо – 0,56, сравнимо с Землей – 0,36). Это указывает на преобладание темноцветных минералов в коре планеты, скорее всего, железисто-магнезиальных силикатов (Войткевич, 1979). В пользу такого предположения свидетельствует и высокая средняя плотность вещества планеты.

На фотографиях «Маринер-10» поверхность Меркурия представляет собой луноподобный пейзаж, плотно усеянный кратерами размером от 50 м до 200 километров и более (рис. 90). Между кратерами располагаются весьма протяженные равнины. Это первое отличие от


Рис. 90. Поверхность Меркурия – фотография сделана

американской межпланетной станции «Маринер-10» в 1974 г.

Луны, где нет межкратерных равнин (Кауфман, 1982). Кратеры имеют плоское дно без центральной горки, как на Луне. Все они ударного происхождения – за счет падения крупных и мелких метеоритов, астероидов и, возможно, комет. Судя по возрасту пород подобных образований на Луне, образование кратеров происходило 3 – 4 млрд. лет назад. Отмечается большое количество глыбообразных холмов и гор высотой 250 – 2000 м.

Изучая фотографии, геологи обнаружили еще одно существенное различие между Меркурием и Луной: по всей планете встречаются крупные уступы с мелкими зубцами высотой 1 – 2 км и длиной в несколько сотен километров (Кауфман, 1982). Такие геологические образования возникают обычно в результате сжатия тела планеты и уменьшения площади ее поверхности. Сжатие было обусловлено охлаждением недр Меркурия.

Какие же выводы можно сделать из приведенного фактического материала о природе ближайшей к Солнцу планеты и ее внутреннем строении?

То, что на Меркурии нет атмосферы, однозначно указывает на давно угасшую здесь вулканическую деятельность. Отсутствие у большинства кратеров центральной горки-вулкана, существование безлавовых кратеров свидетельствует о большой глубине астеносферного или подобного ему высокотемпературного слоя, где вещество пребывает в расплавленном состоянии. Частично лавовые заполнения кратеров могли образоваться за счет местного расплава пород, возникающего при преобразовании кинетической энергии в тепловую.

По оценкам исследователей (Хаббард, 1987), высокая плотность Меркурия объясняется наличием у него мощного металлического (по всей вероятности, железного) ядра, диаметр которого достигает 3600 км, т.е. сравним с размерами Луны. Толщина вышележащей мантии, состоящей, по всей видимости, из силикатных пород, в этом случае будет около 640 км. Типичная плотность силикатов – 3,3 г/см 3 , железа – 8,95 г/см 3 . Их смесь дает искомую 5,44 г/см 3 плотность Меркурия, если железо составляет 60% массы планеты.

При таком мощном железном ядре у Меркурия не остается места для достаточного развития жидкого внешнего ядра, подобно тому, что мы видели у Земли. Тогда возникает вопрос о природе наблюдаемого магнитного поля, имеющего тоже дипольную структуру. Здесь могут быть два предположения – либо оно генерируется намагничением железного ядра в прошлые эпохи, вследствие более быстрого вращения планеты, либо оно вбито солнечным ветром магнитного поля внешней короны Солнца.

Первое предположение нам кажется более правдоподобным, ибо это согласуется с дипольным характером поля. Современное медленное вращение планеты обусловлено вековым приливным торможением ее со стороны огромной гравитационной массы Солнца. Меркурий, видимо, давно почти остановил свое осевое вращение. Его ядро еще может пребывать в расплавленном состоянии.

Межкратерные равнины и отсутствие внекратерных горных образований сколько-нибудь значительных размеров можно объяснить отсутствием на планете условий для вулканизма. В отличие от Земли на Меркурии из-за мощного железного ядра, возникшего, по всей вероятности, изначально в ходе гетерогенной аккреции (см. гл. XV), никогда не было внешнего жидкого ядра, а отсюда и зоны вторичного расплава – астеносферы. Поэтому не было и вулканизма. Давление в основании мантии на глубине 640 км составляет всего 70 кбар (70000 атм), что позволяет развить температуру порядка 1500 К (около 2000°С), какой в общем-то недостаточно для образования мощного слоя расплавленного вещества, подобного земной астеносфере. В железном, однородном по химическому составу ядре нет источников тепла, так как нет ни радиоактивных, ни пероксидов (MeO 2) и дигидритов (MeH 2) металлов. Поэтому здесь не происходят термохимические реакции, являющиеся дополнительным источником тепла, летучих и воды. Эндогенная подпитка низов мантии не происходит.

Поскольку небольшая геологическая активность на Меркурии вследствие его малой массы и мощного приливного воздействия со стороны Солнца завершилась 4 млрд. лет назад, не оставив на поверхности почти никаких следов, кроме последующего сжатия (контрак­ции), то можно предположить, что за предыдущие 500 млн. лет произошла полная дифференциация металлической и силикатной фазы с образованием мощного железного ядра и тонкой мантии. Поэтому совершенно естественно, как и в случае с Землей, выводить внутреннее строение Меркурия как результат изначального разделения вещества. В условиях высоких температур близкой протозвезды легкие фракции улетучивались, а тяжелые сформировали вначале массивное ядро, на поверхность которого затем стремительно выпали более легкие силикатные частицы из окружавшего протосолнце пылегазового облака. Образ планеты был создан в процессе ее творения и в дальнейшем остался практически неизменным. Лишь запоздавший дождь каменных обломков, выпавший несколько позже на уже сформировавшуюся поверхность планеты, изрыл ее кратерами. Этот древний лик Меркурия и предстает сегодня перед нами.

Венера

Яркая белая утренняя или вечерняя «звезда», появляющаяся над горизонтом на западе после захода Солнца или на востоке перед его восходом, – это Венера – планета загадок (рис. 91). Ее гелиоцентрическое расстояние – 108 млн. км, она расположена на 50 млн. км ближе к


Рис. 91. Венера, фото «Маринер-10», полученное в 1974 г.

Солнцу, чем Земля. Масса Венеры 4,87×10 27 г, что составляет 81% земной массы. Средний радиус – 6050 км, средняя плотность – 5,245 г/см 3 , ускорение силы тяжести – 8,8 м/с 2 , вес предметов на Венере только на 10% меньше их веса на Земле. Период обращения планеты вокруг Солнца – Т = 225 суткам. Венера очень медленно вращается вокруг своей оси – один оборот за 243,16 суток, причем имеет обратное вращение (навстречу Земле). Это значит, что Солнце восходит на западе, а заходит на востоке. Продолжительность солнечных суток на Венере равна 117 земным суткам.

Венера имеет очень мощную атмосферу гигантской плотности. На поверхности планеты давление атмосферы составляет 100 атм (10 МПа), что соответствует давлению на глубине моря 1000 м.

Находясь ближе к Солнцу, Венера получает в два раза больше тепла, чем Земля – 3,6 кал/см 2 ×мин. Как показали измерения, выполненные советскими межпланетными станциями, температура на поверхности планеты испепеляющая (+480°С), больше, чем на Меркурии. Этот удивительный факт объясняется парниковым эффектом, создаваемым венерианской атмосферой. В свою очередь атмосфера, поглощая и задерживая солнечный свет, также нагревается (рис. 92). Часть тепла, проходя толщу атмосферы, нагревает поверхность планеты. Но переизлучение тепла происходит на более длинных волнах (в инфракрасном диапазоне), которые задерживаются молекулами углекислого газа СО 2 , составляющими 97% массы венерианской атмосферы. На долю кислорода приходится только 0,01%, азота – 2%, водяных паров – 0,05%.


Рис. 92. Температура и давление в атмосфере Венеры

Оранжерейный, парниковый эффект, создаваемый углекислотой, препятствует переизлучению тепла и охлаждению поверхности даже во время длинной венерианской ночи. Отсутствие значительных перепадов приземной температуры объясняет факт необычайно низких скоростей ветра (3 м/с), измеренных станциями «Венера». В то же время наблюдениями с «Маринер-10» были установлены громадные скорости ветра в атмосфере Венеры. Полный оборот вокруг планеты атмосфера делает всего за четыре дня, хотя сама планета, как мы знаем, вращается значительно медленнее. Следовательно, скорость ветра достигает ураганных значений – 100 м/с.

Облачный слой планеты начинается с высоты 35 км и тянется до высоты 70 км. Нижний ярус облаков состоит из 80%-ной серной кислоты (Н 2 SО 4).

Венера имеет очень слабое магнитное поле, напряженность его на экваторе составляет всего 14 – 23 нТ.

Рельеф поверхности планеты недоступен визуальному наблюдению из-за плотной облачности. Он изучался посредством радиолокации с Земли и с трех искусственных спутников – двух советских и одного американского. Кроме того, автоматическая станция «Венера-14», совершившая мягкую посадку на поверхность планеты, передала телевизионное изображение небольшого участка рельефа, на котором видны острые угловатые камни, щебень, песок – явные следы геологического выветривания пород. Измеренная плотность пород близка к земным базальтам – 2,7 - 2,9 г/см 3 . Отношение урана к торию U/Th также оказалось близким к тем значениям, которые наблюдаются в земной коре.

В рельефе поверхности планеты преобладают равнины. Горные районы занимают около 8% территории. Высота гор 1,5 – 5,0 км. Самый высокий горный массив (до 8 км) обнаружен на плато Иштар, размеры которого сравнимы с Австралией, а высота – около 1000 м над уровнем прилегающей равнины.

Низменности занимают 27% поверхности Венеры. Крупнейшая из них – Атлантида – имеет в поперечнике около 2700 км и глубину 2 км. Много невысоких гор и горных цепей. Вблизи экватора обнаружен гигантский разлом длиной до 1500 км и шириной 150 км, глубиной до 2 км. В целом в рельефе Венеры просматриваются черты строения, сходные с земными, – выявляются континентальные и океанические области – земля Иштар, где расположены высочайшие горы Максвелла, область Бета и большой, вытянутый вдоль экватора континент Афродиты. Низменности, подобные Атлантиде, сравнимы с океаническими областями, правда, ныне безводными. Обнаружено несколько вулканов с огромными кратерами (рис. 93), в горных областях отмечены кратеры ударного происхождения. Но в целом следует отметить важный факт: поверхность Венеры слабо кратирована, что указывает на продолжающуюся деятельность геологических процессов преобразования поверхностных пород и рельефообразования, которая в прошлом, несомненно, была значительнее.

Для определения внутреннего строения планеты была предпринята попытка расчета модели с использованием уравнения состояния земного вещества, а также железа и различных окислов и силикатов (Жарков, 1978; Хаббард, 1987). Была получена трехслойная модель, состоящая из коры толщиной 16 км, силикатной оболочки до глубины 3224 км и железного ядра в центре. Вопрос о наличии у Венеры жидкого ядра и астеносферы остался вне обсуждения.

Итак, проанализируем имеющиеся данные по Венере в свете наших знаний о Земле.

Наличие мощной атмосферы с большим содержанием углекислого газа и соединений серы свидетельствует о ее вулканическом происхождении. В условиях Земли СО 2 связывается карбонатной системой Мирового океана с образованием СаСО 3 , принимает участие в синтезе органического вещества, растворен в морской воде, находится в составе биомассы живого органического вещества и законсервирован в осадочных породах в виде отмерших организмов. Поэтому в земной атмосфере углекислого газа содержится ничтожное количество – менее 0,1%. Поступает же он ежегодно с вулканическими извержениями и по глубинным разломам земной коры – около 10 13 г. Общая масса земной атмосферы составляет около 5×10 21 г. На Венере давление атмосферы на два порядка больше. Следовательно, при примерно равной площади сферы планет массу венерианской атмосферы можно оценить в 1,7×10 24 г.

Таким образом, преобладание в атмосфере Венеры углекислого газа служит указанием на отсутствие на поверхности планеты воды и биосферы. Углекислый газ может выделяться также при нагревании карбонатных пород. Поэтому нельзя исключить возможность такого пути поступления СО 2 в венерианскую атмосферу (наряду с вулканизмом). Но тогда надо допустить возможность существования в прошлом на Венере океанов, в которых происходило образование этих карбонатных пород. Возникает вопрос: возможно ли такое, и если да, то когда они были на этой планете и почему исчезли?


Рис. 93. Вулканы на Венере. Радиолокационный снимок сделан

космическим зондом «Магеллан», в 1989 г.


Чтобы попытаться ответить на поставленные вопросы, забежим несколько вперед, в нашем изложении материала и коснемся темы эволюции звезд. Дело в том, что существует несколько стадий развития звезды: красного спектрального класса – с температурой поверхности 3000 К, оранжевого спектрального класса – 5000 К и желтого спектрального класса – 6000 К – это наше современное Солнце. В геологической истории Земли 320 млн. лет назад наступил карбоновый период, знаменательный внезапным расцветом царства наземных растений. Предыдущие формы жизни носят следы, указывающие на их развитие лишь в водоемах и, скорее всего, подо льдом. Можно предположить, что появление карбоновых тропических лесов на Земле обусловлено переходом Солнца от оранжевого в стадию желтого спектрального класса. Обильное тепло создало благоприятные возможности для бурного развития земной флоры. Но одновременно это же Солнце иссушило венерианские океаны, уничтожило органическую жизнь, к тому времени сложившуюся на планете. Продолжающийся вулканизм пополнил атмосферу СО 2 , и если масса его эксгаляций была такая же, как на Земле (10 13 г/год), то за 320 – 400 млн. лет его поступило в венерианскую атмосферу 4×10 21 г. Масса современной атмосферы на три порядка больше, – 1,7×10 24 г, следовательно, недостающая часть СО 2 могла поступить за счет начавшегося отжига (декарбоксилации) известняков, покрывающих дно обширных океанических бассейнов типа Атлантиды, а также за счет разложения погибшей биомассы планеты.

Имея почти такую же, как Земля, массу и, следовательно, сходные термодинамические условия на уровне внешнего ядра (Р = 1,5×10 6 атм, Т =3000 К) и получая до карбонового периода от менее горячего Солнца примерно столько же тепла, сколько сегодня получает его Земля, Венера располагала всеми необходимыми условиями для длительного развития и накопления своей гидросферы и органической жизни. К концу девонского периода на Венере вполне могли существовать моря и океаны и жизнь в них. Трагическая судьба планеты началась с переходом светила в стадию желтого спектрального класса и началом быстрого испарения венерианской гидросферы.

Следы былой геологической жизни на планете весьма отчетливы, и мы о них говорили выше. Венера, несомненно, имела раньше более быстрое вращение. Она, как и Меркурий, постепенно затормозила его под гравитационным воздействием близкого Солнца. Следовательно, планета обладала собственным магнитным полем. Отсутствие его в настоящее время вовсе не является свидетельством отсутствия жидкого ядра. Оно до минимума ослаблено медленным вращением планеты. Атмосфера планеты, несомненно, подпитывается вулканизмом. Иначе она в значительной мере была бы уже утрачена. Но вулканизм, как мы знаем, невозможен без внутренней активности планеты, т.е. без существования жидкого внешнего ядра и его производной – астеносферы.

Для проверки выдвинутой здесь и ранее (Орлёнок, 1990) гипотезы в рамках истории Венеры об однотипности органической жизни в условиях одинакового химического состава протовещества и близких физических условиях на поверхности планет необходимо искать во впадинах Атлантиды Венеры остатки морских осадочных пород – известняков, мраморов, песчаников с фауной и т. д. Один наперсток такой породы, доставленный на Землю, позволит решить сразу ряд крупных естественнонаучных и космогонических проблем. Нам остается только ждать этих фактов.

Луна

Порой, сами того не сознавая, люди чувствуют себя менее затерянными в бездне мироздания, когда в вечернем небе над ними поднимается желтый диск Луны. Вечная спутница Земли – Луна – с расстояния 384 тыс. км видела все, что происходило на земной поверхности. Только она одна могла бы во всех подробностях рассказать нам подлинную историю событий, происходивших на Земле. Размеры и масса Луны приближаются к планетным параметрам. Поэтому мы расмотрим ее строение здесь наряду с планетами Земной группы.

Масса Луны – 7,35×10 25 г, т.е. в 81 раз меньше земной. Диаметр – 3476 км, средняя плотность – 3,34 г/см 3 . Ускорение силы тяжести в 6 раз меньше, чем на поверхности Земли, и составляет 1,63 м/с 2 .

Луна делает один оборот вокруг Земли за 29,5 суток, скорость вращения вокруг оси 27,32 суток. Таким образом, периоды ее осевого вращения и сидерического обращения вокруг Земли равны. Вот почему Луна всегда обращена к нам одной и той же стороной (рис. 94).

Луна лишена воды и атмосферы. В течение солнечного дня, длящегося, как и ночь, 15 суток, ее поверхность нагревается до +130°С, а ночью охлаждается до -170°С.

С 1969 по 1972 г. 29 американских астронавтов побывали на Луне. Три автоматические станции и два лунохода, посланные СССР, также проделали большую работу. Все это позволило провести разносторонние исследования физических полей, рельефа и лунных пород. Сравнение фотографий обращенной к Земле и противоположной сторон Луны позволяет заключить, что из-за приливного торможения спутник уже давно практически остановил свое вращение.


Рис. 94. Луна

Рельеф лунного полушария, обращенного к Земле (рис. 94), довольно разнообразен. Здесь различают обширные низменности, получившие названия морей, материковые области с горными хребтами и отдельными горными массивами высотой 5 – 8 км, множество крупных и мелких кольцевых кратеров. В одном из них – кратере Альфонс диаметром 124 км – в 1958 г. наблюдалось свечение центральной горки. В нем были обнаружены выделения углерода.

На обратной стороне Луны преобладают кратерные формы и отмечено лишь два моря – море Москвы и море Мечты.

Поверхность кратеров и лунных морей – плоская, магматического происхождения. Судя по возрасту пород, последний этап вулканизма на Луне закончился 3,3 млрд. лет назад. Расплавленная мантия находилась в то время на сравнительно небольшой глубине, и магма после удара метеорита легко выходила по трещинам на поверхность, заполняя образовавшийся кратер. Обилие мелких кратеров микронного и миллиметрового диаметров свидетельствует о беспрепятственной метеоритной бомбардировке лунной поверхности, обусловленной отсутствием атмосферы и продолжающийся поныне. Например, только за четыре года осуществления американской программы «Аполлон» установленные сейсмографы зарегистрировали 12 000 сейсмических тол­чков, из них 1700 пришлось на долю сильных ударов метеоритных тел.

Однако часть кратеров, например Коперник (диаметр 100 км), имеет вулканическое происхождение. Об этом говорит сложный гористый рельеф их поверхности, слоистое строение стенок кратера. Это структура не ударного происхождения, а образовавшаяся в результате проседания.

Анализ доставленных на Землю образцов лунных пород и грунта показал, что это древнейшие образования, имеющие возраст от 3,3 до 4,2 млрд. лет. Следовательно, возраст Луны близок к возрасту Земли – 4,6 млрд. лет, что позволяет уверенно предполагать их одновременное образование.

Лунный грунт (реголит) имеет плотность 1,5 г/см 3 и сходен по химическому составу с земными породами. Малая плотность его объясняется большой (50%) пористостью. Среди твердых пород были выделены: «морской» базальт (содержание кремнезема 40,5%), габбро-анортозиты (содержание SiО 2 – 50%) и дацит с высоким содержанием кремнезема (61%), приближающим его к земным кислым (гранитным) породам.

Анортозитовые породы имеют наиболее широкое распространение на Луне. Это самые древние образования. По данным сейсмических исследований, проведенных с помощью шести сейсмографов, установленных американскими астронавтами, выявлено, что лунная кора до глубины 60 км состоит преимущественно из этих пород. Предполагается, что нориты образовались в результате частичного плавления анортозитов. Анортозиты слагают преимущественно возвышенные части лунной поверхности (континенты), нориты – горные области. Базальты покрывают обширные поверхности лунных морей и имеют более темную окраску. Они сильно обеднены кремнеземом и по химическому составу близки к Земным базальтам. Замечательно, что астронавтами не было доставлено ни одного образца морских осадочных пород. Это значит, что на Луне никогда не было морей и океанов, а выносимая с вулканизмом на поверхность вода диссипировала. Из-за малой массы скорость преодолевания газовыми молекулами силы лунного притяжения составляет всего 2,38 км/с. В то же время при нагревании скорость легких молекул – более 2,40 км/с. Поэтому Луна не может удерживать свою газовую атмосферу – она быстро улетучивается.

Средняя плотность так называемых «морских» базальтов – 3,9 г/см 3 , а анортозитовых пород – 2,9 г/см 3 , что выше средней плотности земной коры – 2,67 г/см 3 . Однако низкая средняя плотность Луны (3,34 г/см 3) указывает на общее однородное строение ее недр и отсутствие у Луны железного ядра сколько-нибудь значительных размеров.

Но нельзя совсем исключать наличие очень небольшого металлического ядра первичной конденсации, вокруг которого происходило формирование силикатной лунной оболочки.

В пользу предположения об однородной Луне говорит близость ее момента инерции I /Ma 2 к предельному значению, равному 0,4. Напомним, что для Земли величина I /Ma 2 = 0,33089, что соответствует значительной концентрации массы в центре планеты и согласуется с ее общей высокой средней плотностью.

Слабое изменение плотности r и силы тяжести g с глубиной в случае однородной модели позволяет определить давление в центре Луны из простого соотношения: Р = grR , где g = 1,63 м/с 2 , r = 3,34 г/см 3 , R = = 1738 км. Отсюда Р » 4,7×10 4 атм. На Земле такое давление достигается на глубине порядка 150 км.

Изучение распространения сейсмических волн показало, что почти все возмущения возникали глубоко в недрах Луны на глубине около 800 км. Эти лунотрясения происходили периодически и связаны с приливным возмущением со стороны Земли. Не коррелирующиеся с приливами лунотрясения вызываются тектоническим механизмом освобождения энергии – они значительно сильнее первых (Хаббард, 1987).

Глубже 1000 км поперечные волны плохо проходят. Эта область Луны, по-видимому, является аналогом земной астеносферы (Хаббард, 1987). Вещество здесь пребывает в расплавленном состоянии. Этот вывод подтверждается и тем фактом, что глубже 1000 км очаги лунотрясений не наблюдались.

У Луны не обнаружено собственного дипольного магнитного поля. Поэтому большой сенсацией было открытие астронавтами магнетизма лунных пород. Так, в районе моря Дождей измеренное поле было 6 нТ, в океане Бурь – 40 нТ, а на насыпном валу Фра-Мауро – 100 нТ. В районе кратера Декарт вдоль профиля наблюдений в несколько километров поле сильно менялось, достигая 300 нТ. Оказалось также, что кора континентов намагничена сильнее коры лунных морей. По современным оценкам, величина магнитного момента диполя Луны в миллион раз слабее земного. Это составляет всего несколько единиц нанотесл (гамм) на лунном магнитном экваторе. По образцам горных пород установлено, что основными носителями лунного магнетизма являются частички железа. Все это свидетельствует о существовании ранее более мощного собственного магнитного поля у Луны, когда ее осевое вращение было более быстрым и действовал вулканизм. Значит, Луна вначале обладала достаточно мощным расплавленным внешним ядром, в котором эффективно действовал механизм гидромагнитного динамо, подобный тому, что имеет место на Земле. Сегодня же на Луне регистрируется лишь остаточный магнетизм, законсервировавший память прошлых луномагнитных эпох.

Приливные возмущения Луны имеют, вероятно, для истории Земли такое же значение, что и возмущения Солнца для Меркурия и Венеры. Тесная связь между периодичностью максимальных приливных возмущений и проявлений вулканизма известна не только на Луне, но и на Земле. Но эти возмущения на Земле захватывают не только водную оболочку и ее поверхность. Периодические взаимные смещения испытывают частицы вещества внутри нашей планеты, особенно в ее расплавленных зонах – внешнем ядре и астеносфере. Постоянное приливное перемешивание вещества и возникающая при этом добавочная теплота от взаимного трения частиц должны были способствовать ускорению процессов термохимических реакций и общей дифференциации вещества. Возникавшие при этом уменьшения давлений или повышения температуры способны были в условиях расплавленных зон Земли и Луны ускорить химическое разложение дигидритов (MeH 2) и пероксидов (MeO 2) металлов протовещества.

Таким образом, Луна для Земли явилась своего рода катализатором и регулятором внутренней активности. Не будь ее, эволюция протовещества в земных условиях, несомненно, сильно замедлилась бы. Аналогичную роль сыграла Земля для Луны.

И, наконец, еще один важный аспект проблемы. Приливное взаимодействие Земли и Луны постепенно уменьшает скорость вращения обеих планет. В результате, как отмечалось, Луна уже прекратила свое вращение и постоянно обращена к Земле одной стороной. С момента своего образования значительно уменьшилась и скорость вращения Земли. Это находит подтверждение в непосредственных астрономических измерениях, а также при изучении древних вавилонских, египетских и шумерских записей о наблюдениях солнечного затмения, выполненных более 2000 лет назад. Дополнительную информацию по этому вопросу дают исследования ископаемых кораллов различного возраста. Было установлено, что по сравнению с силуром (440 млн. лет назад) скорость вращения Земли уменьшилась на 2,47 часа. На столько же увеличилась продолжительность суток. Все три рассмотренных и независимых источника дают один внутренне согласованный результат: уменьшение скорости вращения Земли происходит в среднем на две секунды в каждые 100000 лет.

Вследствие уменьшения скорости вращения Земли происходит обмен моментами количества движения с Луной. В результате скорость вращения Луны вокруг своей оси уменьшалась быстрее, чем Земли, и одновременно возрастало расстояние между ними. Средняя скорость удаления спутника, по расчетам П. Мельхиора (1976), составляет 3,6 см в год. Если бы это удаление шло так же равномерно, как и замедление скорости (3,6 см в год) за 4,5 млрд. лет Луна удалилась бы от Земли на расстояние 162 тыс. км. Следовательно, сразу после образования планет она находилась на расстоянии, в 2,4 раза меньше современного. Столь близкое расположение Луны должно было бы вызвать на Земле катастрофические приливные деформации коры и глубинного вещества. Это событие должно было бы отразиться в докембрийской геологии в виде колоссального по объему вулканизма и других явлениях. Одновременно аналогичные события должны были произойти и на Луне. Однако ничего подобного в действительности не запечатлено в истории обеих планет. Следовательно, есть основания предположить, что современная скорость приливного торможения не всегда была таковой, а приобретена Землей лишь сравнительно недавно.

С другой стороны, наблюдаемое приливное торможение вызвано главным образом океанскими приливными волнами. Не будь их, скорость торможения была бы значительно меньше. Но, как мы знаем, океаны современных размеров и глубин появились лишь в конце палеогена, т.е. 30 – 50 млн. лет назад. В докайнозойское время обширных и глубоководных бассейнов еще не было, а в небольших мелководных морях приливы ничтожно малы. Следовательно, современную скорость удаления Луны, вызванную приливным торможением Мирового океана, мы должны распространять не на всю историю Земли, а лишь на период океанизации, т.е. 30 – 50 млн. лет. С учетом сказанного найдем расстояние, на которое удалилась Луна за последние 50 млн. лет:
3,6 см/год×50×10 6 лет = 180×10 6 см, т.е. удаление составило 1800 км.

В докайнозойскую эпоху вследствие слабого приливного торможения скорость удаления была по меньшей мере на порядок ниже современной: 0,36 см/год×4,5×10 9 лет = 1,62×10 9 см, т.е. удаление составило 16200 км. Следовательно, Луна и Земля в момент своего образования находились всего на 17 – 20 тыс. км ближе, чем сейчас, что не могло существенно повлиять на величину тогдашних приливов.

Таким образом, наибольшее приливное торможение Земля испытывала в конце первой крупной фазы океанизации, т.е. в конце палеогена. До этого она вращалась с большей скоростью и должна была иметь большее полюсное сжатие и, следовательно, большее вздутие по экватору. Из наблюдений эволюции c искусственных спутников Земли такое вздутие экватора действительно установлено и составляет 70 м. Было также доказано, что оно не соответствует современной скорости вращения. Следовательно, возраст установленного экваториального вздутия составляет 25 – 50 млн. лет. Оно приобретено планетой в докайнозойскую эпоху при большей, чем теперь, скорости вращения.

Все имеющиеся данные указывают, что первоначальные скорости вращения Луны и Земли были значительно больше современных, а их гравитационное взаимодействие сильнее вследствие более близкого расположения их на орбите (Орлёнок, 1980). В этих условиях становятся понятными причины быстрого разогрева планеты, образования термореакционных зон внутри Земли и более раннее завершение активности Луны. Приливные перемещения частиц протовещества способствовали быстрому выделению огромных количеств тепла и разогреву недр планеты. В условиях Луны вследствие большей массы Земли приливный эффект был значительно больше, что ускорило процессы ее эволюции. Вот почему геологическая активность Луны закончилась так рано 3 – 3,6 млрд. лет назад.

В конце концов наступит момент, когда Земля также полностью прекратит свое вращение и будет постоянно обращена к Луне одной стороной. Но поскольку земное магнитное поле создается в результате быстрого вращения планеты, то оно исчезнет так же, как исчезло у Луны, Меркурия и Венеры, давно остановивших свое вращение под действием сил тяготения Земли и Солнца.

Итак, роль Луны в жизни Земли оказывается значительной. Это позволяет по-новому взглянуть на роль спутников в процессе эволюции других планет.

Марс

Орбита Марса проходит значительно выше земной – почти на 60 млн. км. Среднее гелиоцентрическое расстояние составляет 225 млн. км. Но благодаря эллиптичности орбиты Марс через каждые 780 дней сближается с Землей до расстояния 58 млн. км и удаляется до 101 млн. км. Эти точки называются противостояниями. Масса Марса 0,64×10 27 г, радиус 3394 км, средняя плотность 3,94 г/см 3 , ускорение силы тяжести 3,71 м/с 2 . Продолжительность марсианского года – 687 земных суток, период вращения вокруг оси такой же, как у Земли, – 24 часа 34 минуты 22,6 секунды. Наклон оси к плоскости орбиты также близок земному – 24°. Это обеспечивает смену сезонов года и существование «климатических» поясов – жаркого экваториального, двух умеренных и двух полярных тепловых поясов. Однако ввиду значительной удаленности от Солнца (Марс получает в 2,3 раза меньше солнечного тепла, чем Земля) контрасты тепловых поясов и сезонов года здесь иные. Полуденная температура на марсианском экваторе достигает +10°С, а на полярных шапках падает до -120°С.

У Марса имеются два спутника – Фобос и Деймос. Фобос более крупный – 27´21´19 км (рис. 95). Его орбита проходит всего в 5000 км от планеты. Деймос имеет размеры 15´12´11 км и расположен на более высокой орбите – 20000 км от поверхности Марса. По фотографиям «Маринер-9» – американской межпланетной станции, исследовавшей планету в 1972 году, оба спутника являются обломками астероидов. На них видны ямки-кратеры от удара крупных и мелких метеоритов без характерных взрывных валов и базальтовых магматических заполнений, как это наблюдалось на других планетах и Луне.

На Марсе обнаружена очень разреженная атмосфера, давление которой на поверхности составляет всего 0,01 атм. Она состоит на 95% из углекислого газа (СО 2); азота (N) – 2,5%; аргона (Ar) – 2%; 0,3% – кислорода (О 2) и 0,1% – водяных паров. Если атмосферную воду конденсировать, то она покроет марсианскую поверхность пленкой толщиной всего 10 – 20 мм.

Межпланетные советские станции обнаружили у Марса собственное дипольное магнитное поле слабой интенсивности – 64 нТ по экватору (магнитный момент равен 2,5×10 22 СГС (2,5×10 19 А×м 2)). Хотя эти измерения до сих пор дискутируются, наличие магнитного поля у быстро вращающейся планеты – факт закономерный. Его низкая напряженность может быть вполне объяснена отсутствием развитого жидкого внешнего ядра. Завершение вулканизма на планете имело место около 2,0 – 2,5 млрд. лет назад, тогда же редуцировалось и внешнее ядро Марса.


Рис. 95. Фобос (снимок получен американской

станцией «Маринер-9» в 1972 г.)

В 1976 году на Марсе совершили посадку американские станции «Викинг-1» и «Викинг-2». Перед ними ставилась задача поиска следов органической жизни на планете. Хотя решить эту проблему не удалось, был исследован грунт и сделаны фотографии района посадки поверхности Марса с низких высот. Совершенно неожиданно грунт оказался более обогащен железом, чем на Земле, – его состав, по данным измерений, таков: гидритные окислы железа (Fe 2 O 3) – 18%; кремнезем (SiO 2) – 13 – 15%; кальций (Са) – 3 – 8%; алюминий (Аl) – 2 – 7%; титан (Тi) – 0,5%. Такой состав характерен для продуктов разрушения полевошпат-пироксен-оливиновых пород с ильменитом. Красноватый цвет поверхности Марса обусловлен гематитизацией и лимонитизацией пород. Но для этого процесса нужна вода и кислород, которые, очевидно, и поступают из подпочвы при прогревании поверхности марсианским днем или теплыми газовыми эксгаляциями.

Белый цвет полярных шапок объясняется выпадением замерзшей углекислоты. Есть основание полагать, что мантия Марса обогащена железом, или же его высокое содержание в поверхностных породах вызвано низкой степенью дифференциации мантийных пород.

Как и на Луне, непродолжительная геологическая активность Марса обусловлена его небольшой массой. Поэтому трудно в этих условиях ожидать полной дифференциации протовещества в небольшой по мощности зоне расплава мантии.

Масса планеты обеспечивает в центре давление порядка 4×10 5 атм, что соответствует 100 км глубины на Земле. Температура плавления – 1100 К; по некоторым данным, достигается частично на глубине около 200 км. Если в качестве источников тепла брать радиоактивные элементы, то, согласно У. Хаббарду (1987), плавление мантии может начаться только через 2 – 3 млрд. лет после образования планеты. Однако, полагая, что Марс не является каким-то исключением, и прообраз его оболочечного строения, как и Земли, был заложен в ходе его аккреции из небулярного облака, мы полагаем, что внутреннее металлическое ядро (примерно 1 / 3 R), лишенное радиоактивных элементов, возникло изначально. Оно в дальнейшем конденсировало силикатную мантию, содержавшую радиоактивные элементы. Формирование зоны расплава шло, несомненно, по границе твердого железного ядра, как за счет распада коротко- и долгоживущих радиоактивных элементов, так и за счет давления. Формирование же астеносферы как вторичной зоны шло за счет накопления диффундируемого снизу тепла и радиоактивных разогревов вещества на уровне, значительно более глубоком, чем 200 км. Процесс имел очаговый характер, что нашло отражение в особенности марсианского рельефа и характере вулканизма.

Поражают прежде всего размеры марсианских вулканов. Так, гора Олимп имеет высоту 20 км при диаметре основания 500 км (рис. 96). В области Тарсис, расположенной к северу от экватора, есть еще три огромных вулкана. В северном же полушарии Марса находится вторая


Рис. 96. Гора Олимп

вулканическая область – Элизий. В южном полушарии – преимущественно кратеры с плоским дном. Большинство вулканов – щитовые, т.е. лавовые покровы занимают огромные пространства. Это характерно для лав низкой вязкости и крупных очагов вулканизма. На Земле такие извержения происходят при плавлении очень богатых железом пород. Приблизительная оценка глубины очага (0,1 высоты вулкана) дает для щитовых вулканов Марса величину порядка 200 км. Однако эта глубина совпадает с глубиной астеносферной зоны на Земле, где давление в несколько раз выше, чем на соответствующей глубине Марса. У последнего на глубине 200 км давление будет около 3000 атм, что соответствует земным 50 км. Многие корни земных вулканов действительно находятся на этих глубинах. Но если брать средний вертикальный температурный градиент, равный 12°/км, то температура на глубине 50 км будет всего 500 – 600°С, что в два раза ниже необходимой температуры плавления для земной мантии. Из этого следует, что в очаги вулканизма как на Земле, так и на Марсе магма поступает из более глубоких горизонтов, где термодинамические условия и накопленное глубинное тепло, диффундируемое из зоны внешнего ядра, создают температуры порядка 1100 К.

Из-за большей массы Марса и, следовательно, иных термодинамических условий в ядре, а также больших запасов радиоактивных элементов вулканическая активность на нем, несомненно, продолжалась дольше, чем на Луне. В финале ее, где-то 2,0 – 2,5 млрд. лет назад, под почвой и в верхних горизонтах коры произошло накопление воды. Периодические прорывы ее на поверхность планеты в экваториальной области оставили многочисленные следы в виде русел и, возможно, рек, грандиозных оползней и оплывин пород, зафиксированных на фотографиях станции «Маринер-9» (рис. 97).


Рис. 97. Долина «Маринер» – гигантский каньон

на Марсе со следами водной эрозии

Одним из таких свидетельств является гигантский каньон Маринер длиной 4000 км и шириной 2000 км. Его крутые борта опускаются до глубины 6 км. Долина, возможно, имеет и тектоническое происхождение, но по ее краям развита сеть меандрирующих русел явно водного происхождения. Аппараты «Викинг-1» и «Викинг-2» обнаружили гораздо больше признаков водной эрозии, чем сухих русел, которые наблюдал «Маринер-9» (Кауфман, 1982). По мнению исследователей, огромные массы воды периодически внезапно и быстро проносились в некоторых районах поверхности Марса. Много воды на Марсе остается в виде вечной мерзлоты и линз льда под поверхностью планеты. Периодическое ее оттаивание может вызвать наводнения и грандиозные оползни (рис. 98). Вследствие низкого атмосферного давления марсианские реки и озера не могут долго существовать. Вода быстро выкипает и испаряется.


Рис. 98. Гигантский оползень на Марсе в долине «Маринер»

на снимке «Викинг-1» (1976 г.)

Завершая рассмотрение строения планет земной группы и Луны, подведем некоторые итоги. Земля, несомненно, может служить моделью, своего рода эталоном для сравнения обстановки на других планетах. С другой стороны, отклонения от этого эталона несут информацию о специфических процессах, обусловленных гелиоцентрическим расстоянием и параметрами массы планеты.

Все планеты образованы из одного и того же материала – исходного материнского пылегазового облака. Все они обогащены тугоплавкими веществами и железом, ближайшие к Солнцу обеднены летучими элементами. Некоторые различия состава пород определяются, видимо, различным соотношением силикатного и металлического материала. Весьма непродолжительный период геологической и внутренней активности Меркурия, Луны и Марса, исчисляемый одним-двумя миллиардами лет, исключает возможность их дифференциации на оболочки. Сама концепция послеаккреационного расплава планетных недр, изначально однородных по составу, с последующей магматической дифференциацией явно бездоказательна. Процессы дифференциации у малых планет, имеющих небольшие термодинамические параметры, недостаточные для расплава больших объемов вещества, видимо, весьма ограничены. Нет здесь исключения и для Земли. Внутренние металлические ядра планет – большего или меньшего размера – формировались изначально в ходе аккреции пылегазового облака – как первичные ядра конденсации, вокруг которых в дальнейшем шло наращивание более легкого силикатного материала. По мере удаления от Солнца этот материал обогащался летучими элементами и водой. На Меркурии он был обеднен этими элементами, но обогащен железом и другими тугоплавкими веществами.

Масса планет и гелиоцентрическое расстояние являются основными параметрами их эволюции. Чем больше масса, тем дольше идет геологический процесс. Атмосфера – показатель геологической активности.

Весьма сильно влияние приливного торможения со стороны Солнца на расстояние 100 млн. км, которому в полной мере подвергались Меркурий и Венера. Аналогичную роль сыграла Земля для Луны. Все планеты в период своей геологической активности вращались быстрей и, конечно, имели магнитное поле и, следовательно, обладали достаточно развитым жидким внешним ядром. Около 3 млрд. лет назад, исчерпав свои термодинамические возможности и запасы коротко- и долго­живущих радиоактивных элементов, расплавленные околоядерные зоны сократились в размерах, а их температура понизилась. Сохранилось лишь остаточное магнитное поле или память о нем в намагниченных породах.

Астеносфера и расплавленные внешние ядра остались лишь на Земле и, по всей вероятности, на Венере, что находит отражение в продолжающемся геологическом процессе на поверхности этих планет.