» »

Т гаусса. Применение теоремы Гаусса для расчета электрических полей

07.12.2023

Черноуцан А. И. Силовые линии и теорема Гаусса //Квант. - 1990. - № 3. - С. 52-55.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из школьного курса физики вы знаете, что наглядное представление об электрическом поле можно получить по картинке силовых линий (договоримся под «электрическим» полем здесь понимать электростатическое поле). Проводя касательную к силовой линии, мы узнаём направление вектора напряженности (стрелки на линиях укажут, куда именно направить этот вектор), сравнивая густоту силовых линий в разных местах (т. е. число силовых линий, проходящих через единичную площадку перпендикулярно к ней), выясняем, где и во сколько раз больше величина напряженности. Однако значение силовых линий этим не исчерпывается.

Хорошо знакомое вам свойство непрерывности линий в пустом пространстве отражает, на самом деле, важнейшее свойство электрического поля. Сформулируем его: электрическое поле устроено так, что можно проводить силовые линии, соблюдая правило густоты и не обрывая их при этом в пустом пространстве между зарядами; линии начинаются на положительных зарядах и заканчиваются на отрицательных; на каждом заряде начинается (или заканчивается) число линий, пропорциональное его величине.

Вы удивлены? Вам это свойство кажется очевидным, само собой разумеющимся? Это далеко не так. Будь закон Кулона чуть-чуть иным, и провести силовые линии непрерывно уже не удалось бы. Возьмем, к примеру, точечный заряд. По мере удаления от него густота силовых линий уменьшается. Так, при увеличении расстояния от заряда в 2 раза густота линий уменьшится в 4 раза (число линий не изменится, а площадь поверхности сферы увеличится в 4 раза). Во столько же раз уменьшится и напряженность электрического поля. Но только благодаря тому, что в законе Кулона стоит \(~\frac{1}{r^2}\)! Если бы, например, там было \(~\frac{1}{r^3}\), то напряженность уменьшилась бы не в 4, а в 8 раз, и для соблюдения правила густоты половину силовых линий пришлось бы оборвать на пути от r до 2r . И это в пустом пространстве!

Математически строгим выражением свойства непрерывности силовых линий электрического поля является теорема Гаусса. Для того чтобы сформулировать и доказать ее, нам надо сначала перейти от качественного языка силовых линий к точным количественным представлениям. Начнем с того, что несколько перефразируем свойство непрерывности линий.

Рассмотрим произвольную замкнутую поверхность. Если внутри поверхности зарядов нет, то число вышедших из нее линий в точности равно числу вошедших. Удобно входящие линии учитывать наряду с выходящими, но приписывать им знак «минус». Тогда можно сказать, что полное число выходящих из «пустой» поверхности силовых линий равно нулю. Если же внутри поверхности находится какой-нибудь заряд, то, очевидно, что полное число линий, выходящих из поверхности, будет пропорционально величине этого заряда . Это и есть качественная формулировка теоремы Гаусса. Но - пойдем дальше.

Введем скалярную величину Φ - ее называют потоком вектора напряженности через некоторую маленькую площадку:

\(~\Phi = ES \cos \alpha\) . (1)

Здесь \(~\vec E\) - напряженность поля в месте нахождения выбранной площадки (раз площадка маленькая, поле можно считать однородным), S - площадь площадки, α - угол между вектором \(~\vec E\) и вектором \(~\vec n\) нормали к площадке. Посмотрите на рисунок 1: число силовых линий, пронизывающих площадку S , равно произведению их густоты на площадь поперечной площадки \(~S_{\perp} = S \cos \alpha\). Так как густота линий пропорциональна Е , полное число силовых линий, проходящих через площадку, пропорционально потоку Φ . Всем силовым линиям, выходящим из некоторой замкнутой поверхности, соответствует поток через всю эту поверхность (т. е. сумма потоков через отдельные маленькие участки поверхности). Чтобы выходящие линии давали положительный вклад в поток, а входящие - отрицательный, договоримся, чтобы нормаль к поверхности всюду «смотрела» наружу.

Теперь понятно, что теорему Гаусса можно сформулировать так: поток вектора напряженности электрического поля через любую замкнутую поверхность пропорционален полному заряду, заключенному внутри этой поверхности . Чтобы доказать эту теорему, а заодно и вычислить коэффициент пропорциональности, рассмотрим сначала простое, но очень важное свойство величины Φ .

Запишем формулу (1) в виде \(~\Phi = (E \cos \alpha) S = E_n S\), где E n - проекция вектора \(~\vec E\) на направление нормали \(~\vec n\). Если поле создается несколькими зарядами, то по принципу суперпозиции \(~\vec E = \vec E_1 + \vec E_2 + \ldots + \vec E_k\). Но проекция суммы векторов равна сумме проекций: E n = E 1n + E 2n + … + E kn . Отсюда получаем, что полный поток вектора напряженности равен сумме потоков, создаваемых отдельными зарядами: Φ = Φ 1 + Φ 2 + … + Φ k . Поэтому можно говорить о вкладе в полный поток от каждого отдельного заряда.

Докажем вначале, что вклад в поток от точечного заряда q , находящегося вне замкнутой поверхности, равен нулю. Рассмотрим два маленьких участка поверхности, отсекаемых узким конусом (рис. 2). Имеем

\(~\begin{matrix} \Phi_1 = E_1 S_1 \cos \alpha_1 = -E_1 S_{1 \perp} \\ \Phi_2 = E_2 S_2 \cos \alpha_2 = E_2 S_{2 \perp} \end{matrix}\) ,

где \(~E_1 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_1}\) , \(~E_2 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_2}\) .

Из подобия следует, что

\(~\frac{r^2_1}{r^2_2} = \frac{S_{1 \perp}}{S_{2 \perp}}\) .

Таким образом,

\(~\Phi_1 = -\Phi_2\) , или \(~\Phi_1 + \Phi_2 = 0\).

Аналогичное взаимное уничтожение потоков происходит и для любой другой пары соответствующих участков.

Вычислим теперь вклад в поток от точечного заряда, находящегося внутри замкнутой поверхности. Окружим заряд сферической поверхностью радиусом r (рис. 3). Рассуждая аналогично предыдущему, получим, что в этом случае Φ 1 = Φ 2 , т. е. что поток через рассматриваемую произвольную поверхность равен потоку через сферу. А поток через сферу вычислить легко:

\(~\Phi = ES = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2} 4 \pi r^2 = \frac{q}{\varepsilon_0}\) .

Таким образом, мы пришли к окончательной формулировке теоремы Гаусса: поток вектора напряженности электрического поля через произвольную замкнутую поверхность равен полному заряду, заключенному внутри этой поверхности, деленному на электрическую постоянную, т. е.

\(~\Phi = \frac{\sum q_{vnutr}}{\varepsilon_0}\) . (2)

Перейдем теперь к самому приятному - начнем пожинать плоды. Первое применение теоремы Гаусса - это вычисление напряженности электрического поля. Сразу оговоримся, что круг задач, решаемых таким способом, не очень широк (в отличие от способа, основанного на использовании принципа суперпозиции). Но все же он существует. Если мы, например, заранее знаем направление вектора напряженности во всех интересующих нас точках пространства, если удалось выбрать замкнутую поверхность, для которой вычисление потока вектора напряженности является простым, то тогда, может быть, нас ждет успех. Но зато какой успех!

Как известно, много лет потребовалось Ньютону, чтобы доказать, что сила притяжения материальной частицы к шару (Земле) не изменится, если всю массу шара сконцентрировать в его центре. Для проведения доказательства с помощью принципа суперпозиции ему пришлось существенно развить интегральное исчисление. А теперь смотрите, как мы просто справимся с практически такой же задачей. Возьмем шар, равномерно заряженный зарядом Q , и вычислим поле вне его - на расстоянии r от его центра (рис. 4). Из соображений симметрии ясно, что вектор напряженности поля \(~\vec E\) всюду направлен по радиусу. Выразим поток вектора напряженности через сферу радиусом r двумя способами. По определению потока

\(~\Phi = ES = 4 \pi E r^2\) ,

а по теореме Гаусса

\(~\Phi = \frac{Q}{\varepsilon_0}\) .

Отсюда получаем

\(~E = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2}\)

Поле заряженного шара вне его совпадает с полем точечного заряда, помещенного в центр шара.

Другой пример: найдем напряженность поля бесконечной заряженной плоскости с поверхностной плотностью заряда σ (рис. 5). Из симметрии понятно, что вектор \(~\vec E\) всюду перпендикулярен плоскости. Выберем замкнутую поверхность в виде цилиндра, расположенного симметрично относительно плоскости. Поток вектора напряженности через боковую поверхность цилиндра равен нулю, а через каждое основание площадью S он равен ES , т. е.

\(~\Phi = 2 ES\) .

Но по теореме Гаусса

\(~\Phi = \frac{\sigma S}{\varepsilon_0}\) .

Приравнивая правые части обоих равенств, получаем

\(~E = \frac{\sigma}{2 \varepsilon_0}\) .

Наконец, последний пример. Он касается одного очень важного свойства проводников. Покажем, что статические заряды проводника всегда располагаются на его поверхности. Доказательство очень простое. Раз напряженность поля внутри проводника равна нулю (иначе возникло бы движение свободных зарядов), то поток вектора напряженности через любую замкнутую поверхность, проведенную внутри проводника, равен нулю. А это означает, что равен нулю и заряд внутри любой сколь угодно малой поверхности в толще проводника. Следовательно, все заряды проводника действительно располагаются на его поверхности.

А теперь - важное замечание. Доказательство электронейтральности объема проводника опирается на теорему Гаусса, которая, как и свойство непрерывности силовых линий, верна только в том случае, если в законе Кулона стоит \(~\frac{1}{r^2}\). Вывод: справедливость закона Кулона можно проверить экспериментально. Для этого достаточно убедиться в электронейтральности толщи проводника.

Вот видите, как много интересного может рассказать лишь одна теорема - теорема Гаусса.

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

Строгий вывод теоремы Остроградского – Гаусса довольно сложен, мы сделаем ее вывод для частного случая, который достаточно убедительно поддается обобщению. Теорема Остроградского – Гаусса позволяет определить поток вектора напряженности от любого количества зарядов. Для начала определим поток вектора напряженности через шаровую поверхность, в центре которой будет располагаться точечный заряд.

Отсюда следует, что из каждого точечного заряда выходит поток вектора напряженности, который равен значению q/εε 0 . Из обобщения данного положения выводится теорема Остроградского – Гаусса для общего случая – полный поток вектора напряженности через замкнутую произвольной формы поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, поделенной на абсолютную диэлектрическую проницаемость ε а = εε 0 , то есть:

Где: n – количество зарядов, q i – заряд, заточенный внутри поверхности.

В системе Гаусса данное уравнения будет иметь вид:

Для потока вектора электрического смещения N D (вектора индукции) можно получить аналогичную формулу:

То есть, поток индукции через замкнутую произвольную поверхность равен алгебраической сумме электрических зарядов, которые охватываются этой поверхностью.

Если взять какую-то замкнутую поверхность, которая не охватывает заряд q, то каждая линия напряженности (или индукции) будет пересекать ее дважды – один раз она войдет в поверхность, а другой раз выйдет из нее. Из – за этого явления алгебраическая сумма линий индукции, проходящих через замкнутую поверхность, количество которых определяет полный поток индукции N D через эту поверхность будет равна нулю (N D = 0).

Прежде чем рассмотреть несколько частных случаев применения теоремы Остроградского – Гаусса для определения напряженностей различных электростатических полей, введем понятие о плотности зарядов.

– это физическая величина, которая характеризует распределение заряда вдоль линии (нити) или тонкого цилиндрического тела и численно равная отношению заряда к длине элемента нити:

А при равномерном распределении заряда по всей длине линейная плотность:

В СИ единицей измерения линейной плотности заряда τ будет 1 Кл/м.

Если заряд dq распределен по какому-то объему dV, то очевидно, что объемная плотность заряда будет численно равна соотношению заряда к элементу объема:

А при равномерном распределении заряда:

В системе СИ измеряется в 1 Кл/м 3 .

В случаях, когда заряд dq распределяется по поверхности dS и глубина его проникновения пренебрежительно мала, то поверхностная плотность заряда будет определена соотношением:

А в случае если заряд q по площади S распределен равномерно, то:

В системе СИ поверхностная плотность измеряется в Кл/м 2 .

Давайте вычислим , которое создано равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность имеет радиус R и равномерно распределенный заряд q, то есть поверхностная плотность σ в любой точке сферы будет одинакова.

Выберем точку А, которая находится от центра сферы на расстоянии r (рисунок ниже):

Через точку А мысленно проведем новую сферическую поверхность S, симметричную заряженной сфере.

В данном случае через поверхность S поток вектора напряженности будет равен:

По теореме Гаусса N E = q/εε 0 . Отсюда следует, что при r>R:

Если сравнить данное соотношение с формулой напряженности поля точечного заряда, можно сделать вывод, что вне заряженной сферы напряженность поля такова, как если бы весь имеющийся заряд сферы был сосредоточен в ее центре.

Для точек, которые находятся на поверхности заряженной сферы с имеющимся радиусом R, по аналогии с уравнением (7) можно записать:

Если провести через точку В, которая находится внутри сферической заряженной поверхности, сферу S / с радиусом r /

Теперь давайте попытаемся определить напряженность поля, созданного равномерно заряженной нитью (цилиндром) бесконечной длины .

Предположим, что полая цилиндрическая поверхность с определенным радиусом R заряжена с постоянной поверхностной плотностью σ. Проведем коаксильную поверхность цилиндрического типа с радиусом r>R.

Через эту поверхность поток вектора напряженности будет равен:

По теореме Гаусса:

Приравняв правые части этих уравнений получим:

Из формулы (4а) находим, что линейная плотность заряда цилиндра равна:

Использовав это равенство, найдем:

Теперь давайте определим напряженность поля, которое создается равномерно заряженной бесконечной плоскостью.

Если предположить, что данная плоскость имеет бесконечную протяженность и заряд на единицу плоскости равен σ. Из законов симметрии следует вывод, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то одинаковыми по своей величине должны быть поля по обе стороны плоскости.

Если ограничить часть заряженной плоскости 1 воображаемым прямоугольным ящиком 2 (Гауссова поверхность) таким образом, чтобы ящик был рассечен пополам (рисунок ниже).

Обе грани ящика, которые имеют определенную площадь S, должны быть расположены параллельно заряженной плоскости. Вектору Е равен суммарный поток вектора напряженности, умноженному на площадь первой грани S, плюс поток вектора Е через противоположную грань. Через остальные грани поток напряженности будет равен нулю, так как их не пересекают линии напряженности.

Повторив предыдущие рассуждения и применив теорему Остроградского – Гаусса, получим следующее выражение:

Но Е = Е 1 = Е 2 . В таком случае напряженность поля бесконечной равномерной плоскости будет равна:

Координаты точки, в которой определяется напряженность поля, не входят в формулу (12). Отсюда следует вывод, что в бесконечной равномерно заряженной плоскости электростатическое поле будет однородным, а его напряженность в любой точке поля одинакова.

И, наконец, давайте определим напряженность поля, которое создается двумя бесконечными параллельными плоскостями, с одинаковыми плотностями и разноизменно заряженными.

Из рисунка выше видно, что между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов –σ и +σ, напряженность поля равна сумме напряженностей полей, которые создаются обеими пластинами, то есть:

Векторы Е вне пластин направлены противоположно друг другу и взаимно уничтожаются. Поэтому напряженность электрического поля в пространстве, которое окружает пластины, будет равно нулю (Е = 0).

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Популярное