» »

Методы изучения генома человека. Изучение генома человека вступает в новую фазу

07.12.2023

Медицинская генетика – направление, посвященное наследственности, наследственным патологиям и здоровью, лечению и профилактике генетических заболеваний, а также проблемам наследственной передачи предрасположенности к болезням.

Что таке генетика?

Важной частью медицинской генетики является клиническая генетика, чьей задачей является обнаружение, и профилактика наследственной патологии.

Трудно переоценить роль генетики в современной медицине. Как выяснилось, она огромна, и даже те немалые знания, которые накоплены в этой области к настоящему времени, представляют собой, по мнению ученых, лишь вершину айсберга.

Так, врачами, проводящими , было установлено, что многие виды рака наследственно обусловлены, в частности:

  • лейкоз;
  • большинство онкологических заболеваний детского возраста;
  • и др.

Новые технологии, дары научно-технического прогресса, открыли новые возможности для генетики, и из преимущественно теоретической дисциплины она стала прикладной. Расшифровка генома человека открыла возможность вмешательства в геном, исключения одних генов и активации других – вот то направление, в котором развивается медицинская генетика.

Одно из важных направлений, которым занимается генетика – репродукция. Столь популярный метод лечения бесплодия, как ЭКО, который прочно вошел в медицинскую практику, тоже стал возможным благодаря развитию медицинской генетики. Кроме того, при всегда проводится генетическая диагностика при наличии показаний у пациента.

Методы зарубжной генетики

Существуют следующие методы генетики человека:

  • Генеалогический. Метод состоит в отслеживании и изучении родословных, позволяет определять закономерности, по которым наследуются те или иные признаки, в том числе и те, что отвечают за наследственно-обусловленные болезни.
  • Близнецовый. Метод изучает влияние среды на генотип человека при помощи сравнения однояйцевых близнецов, проживающих в разных условиях.
  • Цитогенетический. Метод, состоящий в микроскопическом исследовании хромосом. С его помощью определяются хромосомные заболевания (например, один из вариантов синдрома Дауна).
  • Секвестрирование. Метод, состоящий в изучении ДНК человека на молекулярном уровне.
  • Дерматоглифический. Метод основывается на изучении рельефа кожи пальцев, ладоней и стоп. С его помощью диагностируется ряд наследственных патологий.
  • Биохимический. Используется для исследования наследственно-обусловленных заболеваний обмена веществ, в основе которых лежат ферментные нарушения.
  • Популяционно-статистический метод – изучение закономерностей наследственных признаков в больших группах населения.

Генетическая диагностика за рубежом

Консультация генетика включает в себя генетическую диагностику. Генетический анализ позволяет определить не только возможность появления наследственных болезней, но и предрасположенности к целому ряду распространенных заболеваний.

Для проведения генетического анализа берется кровь (5 мл), кроме того, проводится тщательное изучение анамнеза пациента – это нужно для того, чтобы правильно интерпретировать полученные результаты.

Чаще всего люди обращаются в генетический центр или или любой другой стране при наличии определенных подозрений на возможную наследственную патологию, при наличии такой патологии у одного из членов семьи (в том числе и рожденного ребенка) и во время беременности, при наличии определенных показаний.

Генетическая диагностика у беременных, при обоснованных подозрениях на возможность наследственно-обусловленной патологии, проводится в том числе и инвазивными методами:

Лечение генетических заболеваний за границей

Генетика за рубежом, благодаря наличию ультрасовременного оборудования и подготовленных специалистов, имеет большие возможности в диагностике наследственной патологии всех видов. В отделение генетики пациенты обращаются как по направлению врача при наличии определенных показаний (например, семьи, планирующие ребенка, при наличии подтвержденной генетической патологии у уже рожденных детей) или по собственному желанию.

Независимо от того, будет ли это крупный институт генетики, центр генетики или отделение генетики, пациент получит квалифицированную помощь в полном объеме.

Каждый медико-диагностический центр, занимающийся ЭКО, также располагает возможностью генетической диагностики по современным стандартам – вот почему среди детей, рожденных при помощи искусственного оплодотворения, практически нет тех, кто страдал бы наследственными заболеваниями.

Стоимость лечения в центрах генетики за границей

Если вам нужна консультационная помощь по вопросам генетики, сайт UNIMED предлагает заполнить вам контактную форму и связаться с нами. Мы предоставим Вам исчерпывающую информацию, в том числе и касательно возможной стоимости генетической диагностики и лечения. Также на этом портале вы можеет узнать официальные и других странах.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение в геномику. Геном человека, основные черты организации. Методы изучения генома человека

Значение программы изучения генома человека для практической медицины.

21 век - это эра геномики - время, когда последовательность ДНК в геноме человека определена почти полностью, время, когда анализируется роль тысяч генов человека в норме и при болезнях. Наступает время персонифицированной медицины - когда изучение небольших вариаций во многих генах приведет к выявлению индивидуальной предрасположенности человека к той или иной патологии.

Важнейшие события генетики 20 века, инициирующие изучение генома:

Открытие двойной спирали ДНК (Дж. Уотсон, Фр. Крик, 1953)

Разработка метода секвенирования ДНК - 1997 г.

Выделение эмбриональных стволовых клеток человека (1998)

Решающим достижением молекулярной биологии стала разработка методов секвенирования ДНК в 1977 г.

Международный проект Геном человека официально стартовал в 1990 году. Огромный вклад внесли ученые 6 стран - США, Великобритании, Франции, Германии, Японии и Китая. К 2001 г. просеквенировано 90% с точностью 99,99%. К 2003 г. секвенировано 99% генома человека. Осталось около 400 брешей.

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК.

Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд. пар оснований .

Полное секвенирование выявило, что человеческий геном содержит 20--25 тыс. активных генов , что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) -- то есть только 1,5 % всего генетического материала кодирует белки. Остальная часть (97%) является некодирующей ДНК, которую часто называют мусорной ДНК . Геном человека -- совокупность наследственного материала, заключенного в клетке человека.

Вообще слово «геном» относится к общему содержанию ДНК у данного вида, включая не только гены, но и всю остальную ДНК. У человека, например, на долю кодирующих белки последовательности приходится только 1,25% всего генома. Что же представляет человеческий геном?

На долю интронов приходится до 20-25%. Но значительную часть межгенной ДНК занимают регуляторные последовательности.

Классификации генов:

Гены активные и репрессированные

Основная масса генов, активно функционирующих в большинстве клеток организма на протяжении онтогенеза,-- это гены, которые обеспечивают синтез белков общего назначения (белки рибосом, гистоны, тубулины и т. д.), тРНК и рРНК. Такие гены называют конститутивными. Работа другой группы генов, контролирующих синтез специфических белков, зависит от различных регулирующих факторов. Их называют регулируемыми генами. Изменение условий может привести к активации «молчащих» генов и репрессии активных. Дифференцированная экспрессия генома у млекопитающих обусловливает развитие огромного множества типов тканей.

Кодирующие белки и РНК

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома .

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.

Структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка.

Гены «домашнего хозяйства» и гены «роскоши».

Все гены разделяют на гены "домашнего хозяйства" и гены "роскоши".

Гены "домашнего хозяйства" кодируют то, что всегда нужно любой клетке независимо от ткани. Гены «домашнего хозяйства» (housekeeping genes) -- это гены, необходимые для поддержания важнейших жизненных функций организма, которые экспрессируются практически во всех тканях и клетках на относительно постоянном уровне. Гены домашнего хозяйства функционируют повсеместно, на всех стадиях жизненного цикла организма.

По разным оценкам таких генов у человека 10-20 тыс. Это гистоновые гены, гены tРНК, rРНК и т.п.

Гены "роскоши", которых заведомо больше в 2-3 раза, это гены, которые экспрессируются в клетках определенных тканей и в определенное время. Например, все гены белковых гормонов - гены "роскоши".

Регуляторные последовательности -- последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры).

Сайленсер (англ. Silencer) -- последовательность ДНК, с которой связываются белки-репрессоры (факторы транскрипции). Связывание белков-репрессоров с сайленсерами приводит к понижению или к полному подавлению синтеза РНК.

Инсулляторы

Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК в виде 2-6 кольцевых молекул. Хромосомы человека. Размер хромосом варьирует от 45 миллионов до 280 миллионов пн.

Хромосома не гомогенна. В ней чередуются участки эухроматина (не плотные участки) и гетерохроматина (более плотный). При дифференциальной окраске по длине хромосомы выявляется ряд окрашенных (гетерохроматин) и неокрашенных (эухроматин) полос. Характер поперечной исчерченности, получаемый при этом, позволяет идентифицировать каждую хромосому в наборе, так как чередование полос и их размеры строго индивидуальны и постоянны для каждой пары.

ЭУХРОМАТИН, вещество хромосомы, сохраняющее деспирализованное (диффузное) состояние в покоящемся ядре и спирализующееся при делении клеток. Содержит большинство структурных генов организма.Гетерохроматин - протяженные участки повторяющихся и высоко конденсированных последовательностей, которые не кодируют никаких белков.

Классификация гетерохроматина:

Факультативный (В зависимости от стадий клеточного цикла, типа клеток, один и тот же участок хромосомы может быть в состоянинии как гетеро-, так и эухроматина. Такие участки хромосом называют факультативным гетерохроматином.

Конститутивный (околоцентромерный, теломерный) Участки, которые всегда уплотнены. Эти участки хромосом содержат тандемно повторяющуюся ДНК (расположенные друг за другом «голова к хвосту»).

Околоцентромерный гетерохроматин состоит из коротких тандемных повторов длиной до 20 п.о., организованных в длинные блоки (по 100-200 тандемов). Блоки образуют ряды длиной от 250 тыс. до 5 млн. пн. Такой тип ДНК называется сателлитной, альфоидной (альфа-сателлитной). Составляют 3% генома. В местах расположения сателлитной ДНК возможна максимальная компактизация, все четыре уровня упаковки ДНК представлены даже в интерфазе. По сателлитной ДНК происходит кроссинговер между гомологичными хромосомами.

Теломемры (от др.-греч. фЭлпт -- конец и мЭспт -- часть) -- минисателлиты - концевые участки хромосом. У большинства эукариот теломеры состоят из коротких тандемных повторов.и содержат тысячи 6-нуклеотидных повторов: у человека - TTAGGG, (для сравнения у всех насекомых -- TTAGG, у растений -- TTTAGGG). Они повторяются от 250 до 1500 раз.

С теломерами связано несколько белков, образующих защитный «колпачок» - теломерный комплекс, который предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы и защищая всю хромосому от разрушения. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию.

В каждом цикле деления теломеры клетки укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого конца. ДНК-полимераза может начать синтез цепи только с РНК-праймера. После окончания синтеза ДНК РНК-праймеры на отстающей цепи удаляются, а пропуски заполняются ДНК-полимеразой. Однако на конце цепи такой пропуск заполняться не может. Поэтому 3" участки ДНК остаются однонитевыми, а 5"недореплицированными. Следовательно, КАЖДЫЙ РАУНД РЕПЛИКАЦИИ БУДЕТ ПРИВОДИТЬ К УМЕНЬШЕНИЮ КОНЦОВ ХРОМОСОМЫ. Данный феномен носит название концевой недорепликации и является одним из важнейших факторов биологического старения. Так, у новорожденного длина теломер варьирует около 15 тысяч пн при хронических заболеваниях снижается до 5 т.н.п. Ученые из университета Кардиффа (Cardiff University) установили, что критическая длина человеческой теломеры, при которой хромосомы начинают соединяться друг с другом, составляет 12-13 теломерных повторов .

При таком критическом укорочении теломер нарушается структура хромосом, могут повреждаться прилегающие гены и начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние покоя - необратимой остановки клеточного цикла. В результате клетка может умереть или перестать делиться. Это происходит в большинстве нормальных соматических клеток, которые имеют ограниченную способность к размножению. В состояние такого покоя клетку могут привести многие стимулы -- дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др.

Однако в зародышевых, половых и стволовых клетках имеется специальный фермент - теломераза, способный восстанавливать теломерные последовательности, которые укорачиваются при каждом акте репликации.

Защитные механизмы концевой недорепликации.

Существует специальный фермент -- теломераза (РНК+белок), который при помощи собственной РНК-матрицы достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных клеток теломераза заблокирована, однако активна в стволовых и половых клетках.

Считается, что реактивация теломеразы -- важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит пролиферации. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что чаще всего приводит к злокачественным новообразованиям. Активные теломеразы обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. Поэтому в настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы.

За открытие защитных механизмов хромосом от концевой недорепликации с помощью теломер и теломеразы в 2009 году присуждена Нобелевская премия по физиологии и медицине австралийке, работающей в США, Элизабет Блекберн (Elizabeth Blackburn), американке Кэрол Грейдер (Carol Greider) и её соотечественнику Джеку Шостаку (Jack Szostack).

Кроме того, в последние годы теломерная ДНК стала предметом пристального изучения из за того, что была обнаружена связь между укорочением теломер и старением.

Другие классы тандемных повторов являются генами для РНК, например, рибосомальной. Эти гены локализованы в ЯОР 5 пар акроцентрических хромосом.

Другая группа повторов - диспергированные повторяющиеся последовательности, которые разбросаны по всему геному по отдельности, а не тандемно. Они являются подвижными (мобильными) генетическими элементами - ретротранспозонами. 15% генома занимают длинные диспергированные элементы - LINE, 12% - короткие SINE. Эти последовательности производят ферменты - эндонуклеазы, способные делать надрезы в ДНК и встраивать туда свои последовательности. Встраивание МГЭ в ДНК способно нарушить функцию гена. У человека известно около 30 ретротранспозиций, вызывающих болезни. Почему же геном не избавляется от таких опасных участков? Повторяющиеся последовательности и МГЭ являются важным источником ремоделирования генома.

Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Все гены по функциям подразделяются на структурные и функциональные.

Структурные гены несут информацию о строении белков и РНК.

Среди функциональных генов выделяют:

гены-модуляторы, усиливающие или ослабляющие работу структурных генов (супрессоры (ингибиторы), активаторы, модификаторы);

гены, регулирующие работу структурных генов (регуляторы и операторы).

геном недорепликация белок

Размещено на Allbest.ru

...

Подобные документы

    Генетическая терминология, организация генома вирусов, понятие о лизогенном и литическом цикле. Особенности генома и жизненного цикла ретровирусов, геном бактерий. Современные представления о геноме человека: теоретические и практические аспекты.

    презентация , добавлен 04.04.2011

    Определение нуклеотидной последовательности генома человека. Идентификация генов на основе физического, хромосомного и функционалного картирования, клонирования и секвенирования. Новая отрасль биологии - протеомика. Изучение структуры и функции белков.

    лекция , добавлен 21.07.2009

    Организация генома и кодируемые белки вируса иммунодефицита человека. Транскрипция провирусной дезоксирибонуклеиновой кислоты и синтез вирусных веществ. Анализ получения сыворотки и плазмы крови. Характеристика референсных сиквенсов и электрофореграмм.

    дипломная работа , добавлен 04.06.2017

    Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.

    презентация , добавлен 28.10.2014

    Амплификация как важный механизм увеличения объема генома. Роль горизонтального переноса генетического материала в эволюции генома. Значение сохранения дозового баланса генов в генотипе для формирования фенотипа. Взаимодействия между генами в генотипе.

    реферат , добавлен 24.02.2010

    Определение возможности развития заболеваний с наследственной предрасположенностью. Создание международной программы "Геном человека". Электромагнитная среда обитания человека. Оценка риска, связанного с использованием ГМО в продуктах питания человека.

    реферат , добавлен 01.03.2012

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Общие черты методов изучения наследственности человека, наследственные заболевания и их профилактика. Природа материальных носителей наследственности, механизмы их проявления и изменения. Генеалогический, близнецовый и цитогенический методы исследования.

    курсовая работа , добавлен 06.10.2010

    Строение молекулы ДНК. Ферменты генетической инженерии. Характеристика основных методов конструирования гибридных молекул ДНК. Введение молекул ДНК в клетку. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК.

    реферат , добавлен 07.09.2015

    Кодирование информации в анализаторах. Слуховой анализатор: информация звукового стимула в виде нейронного возбуждения. Обезболивающая (антиноцицептивная) система. Роль генома в пластических изменениях нервной ткани. Физиологическое значение эмоций.

Заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и
Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом.
Секвенирование - это определение нуклеотидной последовательности избранного участка ДНК
Картирование - это создание схемы, описывающей порядок расположения генов на хромосоме
Метод «прогулки по хромосоме» - Метод выделения и анализа нуклеотидных последовательностей (новых генов), фланкирующих известные гены, для которых имеются олигонуклеотидные зонды; после выделения гена с фланкирующими его последовательностями эти последние используются в качестве зондов для выделения новых, прилегающих к ним последовательностей и т.д.; в результате “П.п.х.” с помощью перекрывающихся последовательностей нуклеотидов исследуются неизвестные протяженные участки генома, прилегающие друг к другу
Гибридизация ДНК - образование в опыте двухцепочечной ДНК или дуплексов
ДНК:РНК в результате взаимодействия комплементарных нуклеотидов. Метод гибридизации заключается в следующем: клонированную копию нужного гена помечают радиоактивной или флуоресцентной меткой.
Отмеченный таким образом, фрагмент ДНК называется ЗОНДОМ.
Полимеразная цепная реакция (ПЦР) – молекулярно-биологическая реакция, позволяющая быстро получить большое количество копий конкретного фрагмента ДНК.
Искомый фрагмент может быть частью очень сложной смеси нуклеиновых кислот.
Исходным материалом для ПЦР может быть даже единственная молекула ДНК.
Преимущества: Высокая специфичность; Высокая чувствительность; Возможность диагностики скрытых инфекций; Прямое определение наличия возбудителя; Высокая скорость получения анализа (4-5 часов)
Проблема клонирования человека - проблема этическая в ᴨȇрвую очередь. Человек вторгается в сферу бытия, за которую не ответственен в силу своей природы, что влечет непредсказуемость последствий таких шагов.
Проблемы генотерапии : В обозримом будущем влияние генотерапии ограничено лишь соматическими клетками (не зародышевыми). Трансген должен избирательно попасть в клетки определенной ткани , чему сейчас уделяется существенное внимание. Как только

1.Фундаментальные свойства живых систем. Проявление фундаментальных свойств
живого на основных эволюционно обусловленных уровнях организации жизни.
Фундаментальными свойствами живого являются: 1) Структурная организация; 2)
Отрицательная энтропия; 3) Открытая система; 4) Самообновление,
самовоспроизведение; 5) Раздражимость; 6) Адаптация; 7) Репродукция; 8)
Наследственность; 9) Изменчивость; 10) Индивидуальное развитие (онтогенез); 11)
Филогенетическое развитие; 12) Дискретность и целостность.
Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды - гомеостаза.
Открытая система. Живые организмы - открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза.
Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию , находящуюся в молекулах ДНК.
Раздражимость. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости.
Адаптация - приспособление организма к внешним условиям в процессе эволюции, включая морфофизиологическую и поведенческую составляющие. Адаптация может обеспечивать выживаемость в условиях конкретного местообитания, устойчивость к воздействию факторов абиотического и биологического характера, а также успех в конкуренции с другими видами, популяциями, особями.
Размножение - присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.
Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.
Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.
Онтогенез – процесс индивидуального развития организма, проходящий весь жизненный цикл, начиная от зиготы и до смерти.
Филогенез - историческое развитие организмов, или эволюция органического мира; можно говорить и о филогенезе тех или органов.
Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы , связанные структурно и функционально в единое целое).
2. Профилактика наследственных заболеваний и болезней с наследственным
предрасположением. Пренатальная диагностика, ее методы и возможности.
Пренатальная диагностика --область медицины, которая занимается дородовым выявлением различных патологических состояний плода, в том числе, диагностикой врожденных пороков развития (ВПР) и наследственных заболеваний (НЗ).
Методы пренатальной диагностики:


ультразвуковой скрининг (динамическое наблюдение) развития плода и скрининг сывороточных факторов материнской крови считаются неинвазивными - т.е. не предусматривают хирургического вторжения в полость матки.

Другие же технологии (биопсия хориона или амниоцентез, например) являются инвазивными - т.е. предполагают хирургическое вторжение в полость матки с целью взятия плодного материала для последующего лабораторного исследования.
Биопсия хориона – данный метод проводится до 12 недели беременности. Суть метода: под контролем УЗИ аспирируется очень небольшое количество этой ткани хориона, имеющего плодное происхождение.
Риск осложнений после этой процедуры – 2%.
Кроме хромосомных и некоторых моногенных заболеваний можно определить еще и пол плода.
Процедуру проводят в амбулаторных условиях.
Плацентобиопсия –это малое оперативное вмешательство, позволяющее получить микроскопические кусочки тканей плаценты.
Показание: исключить грубую генетическую патологию плода.
Чаще всего такая необходимость возникает: у женщин старше 35 лет; у женщин, которые уже имеют ребенка с хромосомными аномалиями либо у которых они определялись при ранее возникавших беременностях; при наличии УЗИ-маркеров хромосомных болезней плода; при подтвержденной хромосомной аномалии у одного из родителей или близких родственников; при определении повышенного риска по результатам одного из скрининговых исследований.
Амниоцентез - пункция плодного пузыря с целью получения околоплодных вод.
Амниоцентез проводят обычно на 15-16 неделе беременности. Околоплодная жидкость исследуется на предмет выявления моногенной и хромосомной патологии плода.
Результаты исследования будут не ранее 2-6 недель от амниоцентеза.
Риск осложнений 0,5-1%.
Кордоцентез –пункция сосудов пуповины плода под контролем УЗИ с целью получения крови плода. Выполняют после 20-й недели беременности под наркозом. Взятая из пуповины кровь оценивается цитогенетическим, молекулярно-генетическим и биохимическим методами.
Результат исследования можно получить через 7-10 дней.
Риск прерывания беременности около 2%.
УЗИ-скрининг беременности – это проведение исследования по определенной схеме.
Данный метод диагностики должен проводиться абсолютно каждой женщине, готовящейся стать мамой.
Только качественное УЗИ может с большой степенью достоверности выявить или исключить у плода врожденные пороки развития.
В нашей стране законодательством установлены следующие сроки обязательного УЗИ скрининга, основанные на многолетнем опыте работы
11-13 недель
20-22 недели
30-34 недели
Первый скрининг проводится не ранее 10 и не позже 14 недель беременности. Это продиктовано тем, что данные сроки оптимальны для выявления грубых пороков развития и определенных показателей, настораживающих в плане генетических отклонений и заболеваний.

1. Геном, клонирование, происхождение человека. – Под ред. Л.И. Корочкина. – Фрязино: «Век 2», 2004. – 224 с.

2. Вымершие звери и птицы, которых проще всего клонировать. – Электронный ресурс. – 2013.

3. Андреева, Л.Е., В.З. Тарантул. Трансгенные животные: фундаментальные и прикладные аспекты / Л.Е. Андреева, В.З. Тарантул // Проблемы и перспективы молекулярной генетики. Том 1 / Отв. ред. Е.Д.Свердлов. – М.: Наука, 2003. – С. 184 – 217.

4. Клонирование человека. Вопросы этики. – Париж, Изд-во ЮНЕСКО, 2004. – 21 с.

Тема № 4. Современные методы исследования генома

Краткое содержание:

1. Классический подход к расшифровке последовательностей ДНК

2. Принцип высокопроизводительного пиросеквенирования ДНК

3. Достижения и перспективы секвенирования

4. Использование методов биоинформатики в секвенировании

5. История прочтения генома человека

Невозможно представить себе современную биологию (не только молекулярную биологию и биохимию, но и систематику, теорию эволюции, антропологию, медицину) без мегабайтов прочитанных последовательностей ДНК, этой плоти и крови биоинформатики , самой динамично развивающейся области биологической науки. Успех в этой области был достигнут в конце ХХ в. благодаря прорыву в создании технических устройств и технологий расшифровки геномов. Определение последовательностей нуклеотидов в молекуле ДНК получило название секвенирования (от англ. sequence – последовательность), а приборы, предназначенные для этой цели, именуются секвенаторами .

1. Классический подход к расшифровке последовательностей днк

Самый распространенный на сегодняшний день способ секвенирования ДНК - «метод терминации цепи », или «дидезокси метод », разработанный в 70-х гг. прошлого века Фредериком Сэнгером (дважды лауреат Нобелевской премии по химии: за определение аминокислотной последовательности инсулина (1955 г.) и за разработку метода секвенирования ДНК (1980 г.)). Дешевизна, точность, а также сравнительная простота автоматизации делает этот метод своеобразным «золотым стандартом » среди всех существующих способов определения последовательности нуклеотидных остатков ДНК. Так был расшифрован весь геном человека, и именно метод Сэнгера до сих пор является рутинным в повседневной лабораторной практике.

амплифицируются

Вначале фрагменты ДНК, последовательность которых предстоит определить, многократно копируются (амплифицируются ), затем нарезаются на короткие куски, которые служат матрицей для синтеза комплементарных цепей ДНК. Синтез в общих чертах напоминает процесс копирования ДНК в живой клетке.

Особенность метода заключается в использовании химически модифицированных разновидностей четырех дезоксирибонуклеотидов , составляющих цепи ДНК. Каждая разновидность «помечена» флуоресцентной молекулой-маркером, на жаргоне «краской». Короткий фрагмент ДНК, называемый затравкой, или праймером , инициирует синтез ДНК в определённой точке цепи ДНК-матрицы. Синтезирует комплементарную цепь особый фермент - ДНК-полимераза . При этом флуоресцентно меченные разновидности нуклеотидов, которые присутствуют в реакционной смеси в значительно меньших количествах, чем обычные нуклеотиды, обрывают синтез, когда один из них оказывается на конце растущей ДНК-цепи. (Все дело в том, что видоизмененные нуклеотиды не имеют той самой химической группы, к которой должен присоединяться следующий нуклеотид для продолжения цепи.) В результате получается смесь, содержащая полный набор ново-синтезированных фрагментов ДНК, каждый из которых начинается в одном и том же месте, но заканчивается во всех возможных положениях вдоль цепи ДНК-матрицы.

Современные автоматизированные секвенаторы разделяют эти фрагменты, пропуская всю смесь через тончайшие капилляры, наполненные гелем. Чем короче фрагмент, тем быстрее он движется в геле по капилляру под действием электрического поля. (Фрагменты ДНК - по сути, ионы, движущиеся в электрическом поле от «минуса» к «плюсу».) Процесс, называемый капиллярным электрофорезом , настолько эффективен, что фрагмент, только что вышедший из капилляра, оказывается ровно на один нуклеотид длиннее, чем предшествующий ему. По мере того как фрагмент появляется, он освещается лазером, что заставляет светиться меченый нуклеотид на его конце. Компьютер определяет разновидность этих нуклеотидов по цвету вспышки и регистрирует последовательность их появления, складывая «буквы» (нуклеотиды) в «текст» (последовательность ДНК). В случае расшифровки целого генома так нарабатываются миллиарды коротких «текстов», которые поступают в специальную программу, запускаемую на суперкомпьютерах. Программа находит места перекрывания «текстов» и, располагая их в нужном порядке, выстраивает полную последовательность генома.

Большинство новых технологических разработок направлено на миниатюризацию , мультиплексирование (в данном случае, параллельное соединение низкопроизводительных блоков системы для повышения общей производительности) и автоматизацию процесса секвенирования. Все они могут быть разделены на два класса. Первый объединяет методы «секвенирования синтезом», в которых основания определяются по мере того, как они встраиваются в растущую цепь ДНК.

Ко второму классу относятся технологии расшифровки последовательности оснований единичной молекулы ДНК. Некоторые из них достаточно экзотичны - как, например, чтение нуклеотидных остатков ДНК электронным или оптическим способом по мере того, как молекула «протискивается» через нанопору . Длинный перечень улучшений системы капиллярного электрофореза в сочетании с возрастающей автоматизацией и усовершенствованием программного обеспечения позволили снизить стоимость секвенирования в 13 раз с тех пор, как первые автоматические секвенаторы появились в 90-е годы.

Но все это выглядит несколько бледно на фоне возможностей нового метода секвенирования синтезом - изощрённого варианта пиросеквенирования, разрабатываемого и внедряемого компанией 454 Life Sciences.

2. Принцип высокопроизводительного пиросеквенирования ДНК

Технология, разработанная компанией 454 Life Sciences, называется пирофосфатным секвенированием, или пиросеквенированием . Сама идея пиросеквенирования, надо сказать, не нова: она возникла ещё в начале 90-х годов прошлого века, но опубликованный тогда метод не сумел вытеснить традиционный дидезокси метод Сэнгера. Однако разработчики из 454 Life Sciences дополнили его возможностями современных нанотехнологий, и количество перешло в качество. Поэтому, точнее будет назвать метод «пиросеквенированием ДНК в плотно упакованных пиколитровых реакторах».

Скорость является одним из главных преимуществ нового метода секвенирования. Название метода заимствовано у знаменитого на Западе автомобиля Chevrolet Chevelle SS 454 1970-го года с двигателем мощностью 360 лошадиных сил.

Весь геном, все его молекулы ДНК, случайным образом фрагментируются на кусочки по 300–500 пар оснований. Затем комплементарные цепи фрагмента разделяются, к каждой цепи фрагментов пришивается одинаковый для всех олигонуклеотид-«адаптер », который позволяет отдельным цепям налипать на пластиковые бусинки . (Последовательность этого олигонуклеотида позволяет позднее в процессе секвенирования распознавать ДНК-матрицу.) При этом смесь разъединённых на комплементарные цепи фрагментов разбавляют таким образом, что каждая бусинка получает лишь по одной (!) индивидуальной цепи.

Каждая бусинка оказывается заключённой в капельку, окруженную маслом и содержащую смесь для осуществления полимеразной цепной реакции (ПЦР), которая и проходит отдельно в каждой капельке эмульсии (так называемая эмульсионная ПЦР , эПЦР). Это приводит к «клональной амплификации» цепей ДНК, а говоря по-русски, к тому, что на поверхности бусинки удерживается уже не одна, а около 10 млн копий («клонов») уникальной ДНК-матрицы.

Далее эмульсия разрушается, вновь двуцепочечные фрагменты ДНК (образовавшиеся в ходе ПЦР) разделяются, и бусинки, несущие одноцепочечные копии ДНК-матрицы, помещаются в лунки «предметного стекла » - слайда особой конструкции. Каждая лунка такого слайда образует отдельный пиколитровый «реактор» , в котором и будет происходить реакция секвенирования.

Слайд представляет собой срез блока , полученного путём нескольких циклов вытягивания и сплавления оптических волокон. В результате каждого цикла диаметр индивидуальных волокон уменьшается по мере того, как волокна формируют пучки шестигранной упаковки увеличивающегося поперечного диаметра. Каждое волокно имеет сердечник диаметром 44 мкм, окружённый 2–3 мкм слоем оболочки. Затем сердечники вытравливаются, и в результате получаются лунки ≈55 мкм глубиной, с расстоянием ≈50 мкм между центрами соседних лунок. Объём таких «реакторов» - 75 пиколитров; плотность размещения на поверхности слайда - 480 лунок на квадратный миллиметр. Каждый слайд несёт около 1,6 миллионов лунок, в каждую из которых попадает одна (!) бусинка с ДНК-матрицей. Слайд помещается в проточную камеру таким образом, что над отверстиями лунок создаётся канал высотой 300 мкм, по которому в лунки поступают необходимые реактивы.

Доставляемые в проточную камеру реактивы текут в слое, перпендикулярном оси лунок. Такая конфигурация позволяет одновременно осуществлять реакции на бусинках, несущих ДНК-матрицы, внутри отдельных лунок. Добавление и удаление реагентов и продуктов реакции происходит за счёт конвекционного и диффузионного переноса. Время диффузии между потоком и лунками составляет около 10 секунд и зависит от высоты проточной камеры и глубины лунок. Глубина лунок тщательным образом рассчитана исходя из следующих соображений:

1. Лунки должны быть достаточно глубокими, чтобы бусинки, несущие ДНК-матрицу, не выскакивали из них под действием конвекции.

2. Они должны быть достаточно глубокими, чтобы исключить диффузию продуктов реакции из лунок, где имело место включение нуклеотида, в лунки, где включения не произошло.

3. Лунки должны быть мелкими настолько, сколько требуется для осуществления быстрой диффузии нуклеотидов в лунку и быстрого вымывания оставшихся нуклеотидов и продуктов реакции в конце каждого цикла, что, в свою очередь, необходимо для обеспечения высокой продуктивности секвенирования и снижения расходов реактивов.

Помимо бусинок с ДНК-матрицей, в каждую лунку «насыпают» ещё бусинок помельче - каждая с «сидящими» на её поверхности (иммобилизованными ) ферментами , необходимыми для пирофосфатного секвенирования. Нуклеотиды (одного вида за раз) и другие реактивы, необходимые для реакции секвенирования, подаются последовательно в проточную камеру, куда помещается слайд.

Каждый раз, когда определённый нуклеотид встраивается в растущую цепь ДНК в какой-нибудь из лунок, в ней высвобождается молекула пирофосфата , которая, в свою очередь, является необходимым предшественником компонента другой ферментативной реакции. Её катализирует особый фермент, люцифераза светлячка Photinus pyralis. Но для её осуществления необходим аденозинтрифосфат (АТФ). Новообразованный пирофосфат превращается в лунке в АТФ под действием ещё одного фермента - АТФ-сульфурилазы . И тогда люцифераза окисляет люциферин до оксилюциферина, а эта реакция сопровождается хемилюминесценцией - по-простому, маленькой вспышкой света. Дно слайда находится в оптическом контакте с оптико-волоконным световодом, подключённым к прибору с зарядовой связью (CCD-сенсор, charge coupled device ). Это позволяет регистрировать излучаемые фотоны со дна каждой индивидуальной лунки, в которой произошло встраивание известного нуклеотида. Общая схема пиросеквенирования дана на рис. 1.

Связывая зарегистрированные от каждой лунки вспышки с типом нуклеотида, присутствующего в проточной камере в данный момент времени, компьютер последовательно отслеживает рост цепочек ДНК в сотнях тысяч лунок одновременно. Время, необходимое для протекания ферментативной реакции, производящей детектируемую «вспышку», составляет порядка 0,02–1,5 секунд. Таким образом, скорость реакции определяется скоростью массопереноса, что оставляет место для улучшений за счёт ускорения доставки реактивов. После поступления в проточную камеру каждого нуклеотида, она промывается раствором, содержащим фермент апиразу . Таким образом, перед тем как «запустить» в камеру следующий нуклеотид, из всех лунок удаляются любые нуклеотиды, остававшиеся там от предыдущего раунда.

Включение того или иного нуклеотида детектируется в результате высвобождения неорганического пирофосфата и последующего излучения света. Определить лунки, содержащие бусинки с матричной цепью ДНК, можно, прочитав «последовательность - ключ» адаптерного олигонуклеотида, пришитого к началу каждой ДНК-матрицы. Из регистрируемого сигнала вычитается уровень фона, затем сигнал нормализуется и корректируется.

Интенсивность нормализованного сигнала для каждой конкретной лунки во время поступления в проточную камеру определённого нуклеотида пропорциональна числу встроенных нуклеотидов. Линейность зависимости сохраняется для гомополимеров длиной как минимум в восемь нуклеотидов. При таком секвенировании синтезом очень небольшое число ДНК-матриц на каждой бусинке теряет синхронизм , т. е. вырываются вперёд или начинают отставать от других матриц. Исправление таких сдвигов необходимо, поскольку потеря синхронизма создаёт кумулятивный эффект , сильно снижающий качество прочтения при увеличении его длины. С учетом этого, сотрудники компании 454 разработали особый алгоритм, позволяющий оценивать и вносить поправки на «перелёт» и неполную достройку цепи, происходящие в отдельных лунках. Высокая точность расшифровки последовательности достигается тем, что система осуществляет многочисленное прочтение одного и того же фрагмента, что позволяет построить единую обобщённую (так называемую консенсусную ) последовательность.

Отдельные прочтения (риды – от англ. reаd, читать) одного и того же участка ДНК выравниваются относительно друг друга исходя из интенсивности сигналов в момент протекания через камеру того или иного нуклеотида, а не на основе последовательности этих прочтений. Затем соответствующие сигналы усредняют, и только тогда записывают полученную последовательность. Такой подход значительно улучшает качество расшифровки последовательности и предоставляет возможность оценки её качества.

В 2005 г. учёные из 454 Life Sciences, используя свою технологию, сумели расшифровать состоящий из 600 тысяч нуклеотидов геном бактерии Mycoplasma genitalium с точностью 99,4%, а также состоящий из 2,1 млн нуклеотидов геном Streptococcus pneumoniae .

Рисунок 1 - Схема пиросеквенирования. А - ДНК фрагментируется, к фрагментам пришиваются олигонуклеотиды-«адаптеры»; полученные двуцепочечные молекулы ДНК разделяются на две комплементарные цепи. Б - Одноцепочечные молекулы ДНК прикрепляются к бусинкам в условиях, стимулирующих попадание лишь одной молекулы на бусинку. Отдельные бусинки заключаются в капли реакционной смеси, окруженные маслом. Количество молекул на бусинке увеличивается в миллионы раз в результате эмульсионной полимеразной цепной реакции (эПЦР). В - Эмульсия разбивается, и цепи ДНК-фрагментов, образовавшиеся в результате эПЦР, разделяются. Бусинки, несущие на своей поверхности миллионы одноцепочечных копий первоначального фрагмента ДНК, помещаются в лунки оптико-волоконного слайда, по одной в каждую лунку. Г - В каждую лунку добавляются бусинки поменьше, несущие на своей поверхности ферменты, необходимые для пиросеквенирования. Д - Микрофотография эмульсии, изображающая «пустые» капли и капли, содержащие бусинки с ДНК-матрицей. Толстая стрелка указывает на 100-мкм каплю, тонкая - на 28-мкм бусинку. Е - Микрофотография фрагмента оптико-волоконного слайда, полученная при помощи сканирующего электронного микроскопа. Видны оболочки оптических волокон и пустые лунки

В статье, в которой впервые был представлен и опробован новый метод, сообщается, что весь геном Mycoplasma genitalium был прочтён за один раз! Сначала весь геном был фрагментирован и превращён в библиотеку кусочков ДНК, как описано выше (труд одного человека на протяжении 4-х часов). После проведения эмульсионной ПЦР и помещения полученных бусинок с ДНК-матрицами на 60 мм 2 слайд (на что одному сотруднику потребовалось 6 часов), процесс завершился 4-х часовой автоматической работой инструмента, состоящей из 42 циклов.

В результате сборки прочитанных последовательностей (каждый около 108 пар оснований) было получено 25 отдельных непрерывных фрагментов, так называемых контигов (от англ. contigious –соприкасающийся), средней длиной в 22,4 тысяч пар оснований. Эти фрагменты покрыли около 96,54% всего генома микоплазмы. Из оставшихся непрочтёнными 4,6% генома, 3% приходились на неразрешимые повторы . Таким образом, за один раз было отсеквенировано 99,5% уникальной последовательности генома.

3. Достижения и перспективы секвенирования

Хотя первая версия инструмента от компании 454 Life Sciences легко могла заменить более 50 капиллярных секвенаторов Applied Biosystem 3730XL по цене в шесть раз меньшей, реакция научного сообщества была на удивление прохладной. Вместо того чтобы принять новую технологию и начать использовать её неисчерпаемый потенциал, многие учёные, привыкшие к использованию метода Сэнгера, заговорили о таких проблемах, как точность расшифровки, длина отдельных прочтений, стоимость инфраструктуры... А кто-то просто восставал против необходимости работать с большими массивами информации, производимыми с использованием новой технологии.

Большинство критиков, однако, не заметили, что множество препятствий, стоящих на пути метода секвенирования следующего поколения, преграждали на первых порах путь и методу Сэнгера. Тогда длина прочтений составляла всего 25 пар оснований, и достигла 80 только после появления терминирующих дидезокси-нуклеотидов Фреда Сэнгера. Технология «секвенирования синтезом», основанная на выделении пирофосфата, изначально позволяла прочитывать отрезки длиной не более 100 нуклеотидов. Спустя 16 месяцев на биотехнологическом рынке, этот показатель был улучшен до 250 пар оснований. Последние разработки позволяют считывать уже около 500 пар оснований, приближая новый метод к методу Сэнгера с его ≈1000 нуклеотидами.

Другим важным фактором, помимо длины отдельных прочтений, является число прочтений , производимое в результате одного «прогона » секвенатора, нормированное на стоимость такого «прогона». Этот вопрос хорошо решается конкурентами 454 Life Sciences, системы которых производят в десять раз больше прочтений, платя за это укорочением их длины, составляющей всего 35 (или меньше) нуклеотидов. Сегодня на рынке существует три коммерческих системы нового поколения для секвенирования ДНК:

Roche (454) GS FLX Genome Analyzer, распространяемый Roche Applied Sciences. (Компания 454 LIfe Sciences выкуплена гигантом Roche Diagnostics в марте 2007 г. за 154,9 млн. долларов, но продолжает оставаться независимым подразделением);

Секвенатор Illumina Solexa 1G и

Наиболее свежая система SOLiD от Applied Biosystems.

Другие системы для расшифровки ДНК, которые уже появились на рынке, относятся к «третьему поколению » и основываются на анализе одиночных молекул. Они разрабатывались компаниями VisiGen и Helicos.

И хотя прочтение бактериального генома за раз было впечатляющим достижением, поначалу не было ясно, какие биологические задачи , недоступные старому доброму методу Сэнгера, можно будет решать, взяв на вооружение новый метод пиросеквенирования. И действительно, первые проекты с участием инструмента Roche 454 GS20 заключались лишь в «перечитывании» уже расшифрованных бактериальных геномов и подкреплении дополнительными данными уже идущих больших «Сэнгеровских проектов». В то же время исследования в области метагеномики , помимо работы с огромными массивами данных, порою бóльшими, чем геном человека, страдали от искажений, вносимых на стадиях конструирования библиотек и клонирования фрагментов для секвенирования.

В этом смысле технология 454, сочетающая эПЦР и пиросеквенирование, обладает неоспоримым преимуществом перед методом Сэнгера. Эмульсионная ПЦР позволяет амплифицировать без всяких предпочтений единичные молекулы ДНК, заключая их в капельку эмульсии и устраняя конкуренцию со стороны других ДНК-матриц за ограниченное число ДНК-полимераз. Пиросеквенирование, в свою очередь, осуществляет параллельное прочтение этих матриц со световым сигналом на выходе, который может считываться компьютером. Первые подобные исследования, опубликованные в 2006 году, показали необыкновенную гибкость метода нового поколения, использованного при изучении микробного многообразия подземных экосистем глубокой шахты, глубоководных морских экосистем, морских вирусных «сообществ» («виромов ») в нескольких океанах.

Интересное исследование, сочетающее в себе метагеномный анализ и «ДНК-палеонтологию », было проведено в конце 2005 г. Одного запуска инструмента Roche (454) GS20 было достаточно для анализа 13 млн. пар оснований последовательности генома 28 000-летнего мамонта . Эта работа проложила дорогу для технически более трудного проекта расшифровки генома неандертальца . Трудность такого проекта состоит в том, что количество выделяемой из образцов костей древней ДНК неандертальца составляет всего лишь 5% от количества, получаемого из «свежего материала». Следовательно, секвенировать приходится в 20 раз дольше, чем это необходимо для генома современного человека. Кроме того, вклад разрушения ДНК в образцах, сохраняемых при умеренных температурах, в сочетании с ошибками, присущими новому методу пиросеквенирования, часто превосходит уровень различия, установленный для геномов неандертальца и современного человека. Поэтому утверждать, что полученная последовательность действительно древняя, а не случайно попавшая в препарат современная ДНК, значительно легче в случае с мамонтом - современные слоны, в отличие от людей, не часто встречаются в лабораториях. Для того чтобы получить настоящую последовательность древнего генома млекопитающего, необходимо провести множество раундов прочтения каждого участка генома, а также удостовериться в происхождении прочитанных участков.

Вместе с прорывом в области секвенирования сложных смесей ДНК, такие проекты сделают возможным изучение любой экосистемы на планете на уровне последовательностей ДНК. Это откроет доступ к флоре и фауне 100-тысячелетней давности - возможности, превосходящие самые смелые ожидания совсем недалекого прошлого.

На клеточном уровне секвенирование нового поколения (здесь и далее речь идёт не только о пиросеквенировании, но и о других новых методах секвенирования синтезом) впервые позволяет учёным идентифицировать мутации в любом организме для всего генома. Так были найдены аллели, отвечающие за устойчивость к антибиотику у Mycobacterium tuberculosis , а также идентифицированы все мутации в геноме размером в 9 млн пар оснований у штамма бактерии, эволюционировавшей на протяжении 1000 поколений. Эти ранние попытки не только продемонстрировали способность новой технологии обнаруживать мутации и ошибки в опубликованных научных статьях, но и связанные с её использованием трудности, такие как ошибки прочтения гомополимерных последовательностей при пиросеквенировании (454) или быстрое уменьшение качества прочтения ближе к 3’-концу последовательности в системах с короткой длиной индивидуальных прочтений (Solexa или SOLiD от Applied Biosystem).

Раньше для преодоления этих трудностей данные, полученные пиросеквенированием, дополняли информацией, полученной классическим сэнгеровским путём. Но поскольку стоимость и затраты, требуемые сэнгеровской составляющей эксперимента, остаются отталкивающе высокими, многие лаборатории сегодня полагаются только на методы нового поколения, обычно сочетая относительно длинные прочтения пиросеквенирования с короткими, но дешевыми (а значит, и многочисленными) прочтениями, осуществляемыми системами Solexa и SOLiD. Такое сочетание различных платформ позволяет производить независимую оценку качества их работы, а также проверять эталонные последовательности, хранящиеся в общественных базах данных.

Получение большого количества последовательностей ДНК из различных близкородственных организмов движет вперед и развивает подход, названный повторным секвенированием (resequencing), в котором работа с последовательностями ведётся иначе, чем при сборке свежесеквенированного генома. При повторном секвенировании сборка направляется уже имеющейся под рукой эталонной последовательностью, и поэтому требует значительно меньшего покрытия (8–12-ти кратного), чем при сборке генома de novo (25–70-ти кратного). Этот подход был применён в работе по расшифровке 10 митохондриальных геномов млекопитающих, которая сделала возможными исследования в области генетики популяций, основанные не на коротких отрезках последовательности, а на полных геномах митохондрий. В настоящий момент многочисленные проекты по расшифровке микробных геномов ведутся не только для расширения списка доступных геномов, но и для проведения будущих сравнительных исследований, сопоставляющих генотип и фенотип организма на геномном уровне.

Далеко может продвинуться также и работа по изучению организмов, которые не стоят в планах по геномному секвенированию - благодаря возможностям новых методов секвенирования напрямую расшифровывать последовательности транскриптов (точнее, кДНК - ДНК-копий матричных РНК) в клетке. Изучение транскриптов посредством прямого секвенирования обладает рядом преимуществ перед методом гибридизации на ДНК-микрочипах. Главное здесь то, что секвенирование не требует никаких знаний о геномной последовательности организма a priori , поскольку последовательность транскрипта может быть немедленно сравнена с эталонной последовательностью близкородственного вида из базы данных, используя стандартные алгоритмы биоинформатики. Знание последовательностей транскриптов может в корне изменить исследования организмов, геномы которых сегодня не стоят в очереди на расшифровку, а в некоторых случаях никогда там и не окажутся. Первые работы в этой области показали, что существует возможность сопоставлять последовательности (кДНК и геномные, соответственно) двух таких далёких друг от друга видов, как бобовое Meticago truncatula и растение-эталон Arabidopsis thaliana . Также было обнаружено множество не описанных ранее транскриптов кукурузы Zea mays .

Прямой анализ транскриптов поможет обойти проблему, которую ставят перед учёными организмы с непомерно большими геномами. Несмотря на успешно проведённые проекты по расшифровке вирусных, бактериальных и больших геномов млекопитающих, метод Сэнгера оставил задачу по расшифровке геномов полиплоидных растений своим преемникам. Эти гигантские геномы, частенько принадлежащие важным хозяйственным растениям (например, геном пшеницы составляет 16 млрд пар оснований), делали все предыдущие попытки по расшифровке бесплодными. Однако перспектива дешёвого секвенирования экспрессируемых участков генома (то есть транскриптов) позволяет надеяться на успешное изучение геномов таких растений хотя бы на функциональном уровне.

И наконец, новые методы секвенирования имеют практическое применение и в медицине. Например, в генетике раковых заболеваний, специфические раковые аллели могут быть отслежены в тканях посредством высокопроизводительного секвенирования геномной ДНК в тех случаях, когда метод Сэнгера терпит поражение. И здесь большим преимуществом нового метода оборачивается многократное прочтение последовательности.

Несмотря на то, что новые методы секвенирования ДНК уже стимулировали большое количество всевозможных исследований, осуществление которых было невозможно ещё в недалёком прошлом, учёным и инженерам, занимающимися разработкой этих технологий - а равно как и компаниям, продвигающим эти технологии на рынке, - предстоит многое сделать для её улучшения. Прежде всего, снизить стоимость . Уменьшение цены на один-два порядка необходимо для осуществления надежд на персональную геномику , цель которой - повторное секвенирование индивидуальных геномов по цене, не превышающей 1000 долларов. В дополнение к этому, снижение процента ошибок будет также горячо приветствоваться - не только для методов следующего поколения, но и для метода Сэнгера, который будет продолжать вносить вклад и в обозримом будущем. Возможно, появятся искусственно изменённые специализированные ДНК -полимеразы , предоставляющие информацию о последовательности ДНК в виде испускаемого светового сигнала. По мере того, как стоимость технологий будет снижаться, количество накапливаемой информации будет расти лавинообразно, что может создать «узкое место» в исследованиях. Поэтому часть усилий по разработке новых технологий секвенирования необходимо направить на развитие биоинформатики .

МЕТОДЫ ИЗУЧЕНИЯ ДНК

1. Для выделения ДНК из гомогената тканей уда­ляют фрагменты клеточных органелл и мембран с помощью центрифугирования. Белки, разрушенные
протеазами (чаще всего применяют протеиназу К), экстрагируют из раствора. Затем ДНК осаждают, на­пример, этанолом и после удаления надосадочной
жидкости ДНК растворяют в буферном растворе.

2. Молекула ДНК среднего размера содержит 150 000 000 нуклеотидных пар и имеет длину 4 см.
Поэтому молекулы ДНК чувствительны к сдвиго­вым усилиям, возникающим в растворе, и в процессе выделения ДНК из тканей она фрагменти-руется. Получаются молекулы ДНК значительно меньше исходных, но все равно очень большие - тысячи или десятки тысяч пар нуклеотидов. Такие молекулы неудобны для исследований, и их при­ходится дополнительно фрагментировать.

Для фрагментирования используют рестриктазы - ферменты, выделяемые из бактерий. У бак­терий эти ферменты участвуют в уничтожении чужеродных для них ДНК. Рестриктазы «узнают» специфические последовательности из 4-6 нук­леотидов (сайты рестрикции), которые встреча­ются в ДНК человека. Известно множество раз­личных рестриктаз, причем каждая из них «узнает» свой сайт рестрикции (рис. 3.3).

С помощью набора рестриктаз можно разрезать молекулу ДНК на фрагменты желаемой длины. На­пример, для изучения первичной структуры удобны фрагменты размером около 300 нуклеотидных пар н.п. Следовательно, цельную молекулу ДНК в 150 000 000 н.п. нужно разрезать на 500 000 фраг­ментов и каждый из фрагментов изучать отдельно.

Полимеразная цепная реакция (ПЦР). Для прове­дения некоторых исследований необходимо боль­шое количество хорошо очищенной высокомоле­кулярной ДНК. Метод ПЦР дает возможность избирательно синтезировать in vitro небольшие уча­стки ДНК и получить за 3-4 ч несколько миллио­нов копий исследуемого фрагмента. Объектами для выделения ДНК могут быть кровь, биоптат ткани, слюна, моча, околоплодные воды и т.д. Подробно этот метод и его применение в ДНК-диагностике будут рассмотрены в теме 3.10.

Гибридизация. Для изучения видовой специфично­сти нуклеиновых кислот применяют метод гибриди­зации. Он основан на способности ДНК к денатура­ции при нагревании (80-90 °С) и ренативации при последующем охлаждении. Возможно использова­ние метода для проведения гибридизации ДНК-ДНК и ДНК-РНК. Методом гибридизации можно установить сход­ство и различия первичной структуры разных об­разцов нуклеиновых кислот.

Секвенирование генома.

Секвенирование генома здорового человека в большинстве случаев не способно предсказать развитие у него в будущем тех или иных заболеваний. Результаты этой работы были представлены на Ежегодной встрече Американской Ассоциации по исследованию рака (Association for Cancer Research), а также опубликованы в журнале Science Translational Medicine .

Полное секвенирование генома представляет собой «каталогизирование» всех генов, полученных человеком от обоих родителей, и их проверку на наличие повреждений ДНК, которые могли бы повысить восприимчивость человека к раку и иным заболеваниям. Поскольку стоимость секвенирования генома постоянно снижается (в настоящее время цена процедуры составляет 1-3 тысячи долларов США), многие здоровые люди начали задумываться над тем, чтобы пройти такое обследование и определить для себя риск развития того или иного заболевания. Однако исследователи из Центра по изучению рака Johns Hopkins Kimmel призывают их не торопиться.

Выводы ученых вовсе не означают, что секвенирование генома не имеет никакой медицинской ценности. «Во-первых, секвенирование генома остается лучшим средством для предсказания „семейных“ заболеваний, таких как рак и некоторые другие, - говорит профессор онкологии Берт Фогельштайн (Bert Vogelstein). - Во-вторых, детальное изучение генома индивидуума помогает лучше понять механизм уже протекающего у него заболевания и точнее подобрать для него индивидуальную терапию. Однако в случае со здоровым человеком геном перестает быть надежным предсказателем».

Исследователи проследили развитие 24 заболеваний у более чем 50 тысяч близнецов из 5 стран, прошедших процедуру секвенирования генома. Результаты показали, что в случае 23 заболеваний анализ генома дал отрицательный результат и отнес риск их развития к разряду «низкий». Однако, по словам профессора Фогельштайна, это вовсе не означает, что данное заболевание у данного человека не разовьется. «Это означает всего лишь, что его персональный риск немного ниже, чем средний риск по популяции, который может быть очень существенным, - говорит исследователь. - Таким образом, даже негативный результат не гарантирует отсутствия заболевания в будущем». При этом риск 4 из 24 заболеваний- заболевания сердца у мужчин, аутоиммунный тиреоидит, диабет I типа и болезнь Альцгеймера - устойчиво определялся в ¾ случаев, что позволяет назвать секвенирование генома достаточно надежным средством определения предрасположенности к этим болезням.

Современная геномика.

Длительное время геномом называли гаплоидный набор хромосом. Накопление сведений об информационной роли внехромосомной ДНК изменило определение термина «геном». В настоящее время он означает полный состав ДНК клетки, т.е. совокупность всех генов и межгенных участков. Можно считать, что геном - полный набор инструкций для формирования и функционирования индивида.

Общие принципы построения геномов и их структурно-функциональную организацию изучает геномика, которая проводит секвенирование, картирование и идентификацию функций генов и внегенных элементов. Методы геномики направлены на расшифровку новых закономерностей биологических систем и процессов. Геномика человека является основой молекулярной медицины и имеет важнейшее значение для разработки методов диагностики, лечения и профилактики наследственных и ненаследственных болезней. Для медицины первостепенное значение имеют исследования в области геномики патогенных микроорганизмов, поскольку они проливают свет на природу инфекционного процесса и создание лекарств, направленных на специфические мишени бактерий.

Геномика, несмотря на её «молодой возраст», подразделяется на несколько почти самостоятельных направлений: структурную, функциональную, сравнительную, эволюционную, медицинскую геномику.

Структурная геномика изучает последовательность нуклеотидов в геномах, определяет границы и строение генов, межгенных участков и других структурных генетических элементов (промоторов, энхансеров и т.д.), т.е. составляет генетические, физические и транскриптные карты организма.

Функциональная геномика. Исследования в области функциональной гено-мики направлены на идентификацию функций каждого гена и участка генома, их взаимодействие в клеточной системе. Очевидно, это будет осуществляться путём изучения белковых ансамблей в разных клетках. Эту область исследований называют протеомикой.

Сравнительная геномика изучает сходства и различия в организации геномов разных организмов с целью выяснения общих закономерностей их строения и функционирования.

Эволюционная геномика объясняет пути эволюции геномов, происхождение генетического полиморфизма и биоразнообразия, роль горизонтального переноса генов. Эволюционный подход к изучению генома человека позволяет проследить за длительностью формирования комплексов генов, отдельных хромосом, стабильностью его частей, недавно обнаруженными элементами «непостоянства» генома, процессом расообразования, эволюцией наследственной патологии.

Медицинская геномика решает прикладные вопросы клинической и профилактической медицины на основе знания геномов человека и патогенных организмов (например, диагностика наследственных болезней, генотерапия, причины вирулентности болезнетворных микроорганизмов и т.д.).

Все шаги эволюции живой природы, несомненно, должны были закрепляться в информационной системе ДНК (а для некоторых существ - в РНК), а также в организации её в клетке для выполнения консервативной функции сохранения наследственности и противоположной функции - поддержания изменчивости. Такое представление о формировании генома каждого вида наиболее обоснованно. Применительно к геному человека можно сказать, что эволюция человека - это эволюция генома. Такое представление подтверждается теперь многочисленными молекулярно-генетическими исследованиями, поскольку стало возможным сопоставление геномов разных видов млекопитающих, в том числе человекообразных обезьян, а также в пределах вида Homo sapiens геномов разных рас, этносов, популяций человека и отдельных индивидов.

Организация генома каждого эукариотического вида представляет собой последовательную иерархию элементов: нуклеотидов, кодонов, доменов, генов с межгенными участками, сложных генов, плеч хромосом, хромосом, гаплоидного набора вместе с внехромосомной и внеядерной ДНК. В эволюционном преобразовании генома каждый из этих иерархических уровней мог вести себя совершенно дискретно (изменяясь, комбинируясь с другими и т.д.).

Наши представления о геноме человека - обширная область генетики человека, включающая по меньшей мере понятия «инвентаризации» генов, групп сцепления, картирования генов (локализация), секвенирования всей ДНК (генов, их мутаций и хромосом в целом), мейотических преобразований, функционирования отдельных генов и их взаимодействий, интеграции структуры и функции генома в целом. На решении всех этих вопросов была сосредоточена обширная многолетняя международная программа «Геном человека» (с 1990 по 2000 г.). Главным направлением работ были последовательное секвенирование участков генома и их «состыковка». Успешные разработки в этой области придали программе клинико-генетический аспект.

Клинические приложения сведений о геноме человека

Систематическое изучение генома человека фактически началось с применения менделевского анализа наследственных признаков человека (начало XX века). Генеалогический метод вошел тогда в широкую практику, и шаг за шагом стал накапливаться материал по «инвентаризации» дискретных наследственных признаков человека, но этот процесс постепенно замедлялся (за 50 лет было открыто не более 400 менделирующих признаков и 4 группы сцепления), возможности клинико-генеалогического метода в чистом виде были исчерпаны.

Бурный прогресс цитогенетики человека, биохимической генетики и особенно генетики соматических клеток в 60-х годах в комплексе с генеалогическим подходом поставил изучение генома человека на новые теоретические основы и высокий методический уровень. Обнаружение новых менделирующих признаков человека стало быстро продвигаться, особенно на биохимическом и иммунологическом уровне, появились возможности изучения сцепления и локализации генов.

Особый импульс изучению генома человека придали молекулярно-генетические методы, или технология генной инженерии (70-е годы). Процесс познания генома углубился до выделения гена в чистом виде и его секвенирования.

В отличие от классической, в новой генетике изменился подход к анализу генов. В классической генетике последовательность была следующей: идентификация менделирующего признака -> локализация гена в хромосоме (или группе сцепления) -> первичный продукт гена -> ген. В современной генетике стал возможным и обратный подход: выделение гена -> секвенирование -> первичный продукт, в связи с чем был введён новый термин для определения такого направления исследований: «обратная генетика» или «генетика наоборот».

Продолжаются совершенствование молекулярно-генетических методов и, что не менее важно, их автоматизация. В США и Великобритании были разработаны и внедрены автоматические приборы по секвенированию геномов. Их назвали геномотронами. В них осуществляется до 100 000 полимеразных реакций в час. Это означает, что в течение недели может быть просеквенирован участок (или участки) длиной в несколько миллионов пар нуклеотидов.

Большую роль в расшифровке генома человека играют вычислительная техника и информационные системы. Благодаря им решаются вопросы накопления информации (базы данных) из разных источников, хранения её и оперативного использования исследователями из разных стран.