» »

Единый план строения тела доказательства эволюции. Доказательства эволюции

14.06.2024
  • 11.Рнк - полимеразы. Строение, виды, функции.
  • 12.Инициация транскрипции. Промотор, стартовая точка.
  • 13. Элонгация и терминация транскрипции.
  • 14. Гетерогенная ядерная днк. Процессинг, сплайсинг.
  • 15. Арс-азы. Особенности строения, функции.
  • 16.Транспортная рнк. Строение, функции. Строение рибосом.
  • 17.Синтез полипептидной молекулы. Инициация и элонгация.
  • 18.Регуляция активности генов на примере лактозного оперона.
  • 19. Регуляция активности генов на примере триптофанового оперона.
  • 20.Негативный и позитивный контроль генетической активности.
  • 21.Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.
  • 22. Гистоны. Структура нуклеосом.
  • 23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
  • 24.Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
  • 25. Хар-ка хромосомного набора человека. Денверская номенклатура.
  • 27. . Классификация мутаций по изменению силы и направленности действия мутантного аллеля.
  • 28. Геномные мутации.
  • 29. Структурные перестройки хромосом: виды, механизмы образования. Делеции, дупликации, инверсии, инсерции, транслокации.
  • 30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации.
  • 31.Физические, химические и биологические мутагены
  • 32. Механизмы репарации днк. Фотореактивация. Болезни, связанные с нарушением процессов репарации.
  • 34. Хромосомные болезни, общая характеристика. Моносомии, трисомии, нулисомии, полные и мозаичные формы, механизм нарушения распределения хромосом в первом и втором мейозе.
  • 35. Хромосомные болезни, вызванные структурными перестройками хромосом.
  • 2.2. Наследование признаков, сцепленных с полом.
  • 37. Хромосомное определение пола и его нарушения.
  • 38. Дифференцировка пола на уровне гонад и фенотипа, ее нарушения.
  • 39. Хромосомные болезни, обусловленные аномалиями половых хромосом: синдром Шерешевского - Тернера, синдром Кляйнфельтера, полисомии по х и у- хромосомам.
  • 40. Хромосомные болезни, обусловленные аномалиями аутосом: синдромы Дауна, Эдвардса, Патау.
  • 41. Сущность и значение клинико-генеалогического метода, сбор данных для составления родословных, применение генеалогического метода.
  • 42.Критерии доминантного типа наследования на родословных: аутосомные, сцепленные с х - хромосомой и голандрические признаки.
  • 43. Критерии рецессивного типа наследования на родословных: аутосомные и сцепленные с х - хромосомой признаки.
  • 44. Вариабельность в проявлении действия гена: пенетрантность, экспрессивность. Причины вариабельности. Плейотропное действие гена.
  • 45. Мгк, цель, задачи. Показание направления в мгк. Проспективное и ретроспективное консультирование.
  • 46. Пренатальная диагностика. Методы: уз, амниоцентез, биопсия ворсин хориона. Показания к пренатальной диагностике.
  • 47. Сцепление и локализация генов. Метод картирования, предложенный т. Морганом.
  • 49. Гибридные клетки: получение, характеристика, использование для картирования.
  • 50. Картирование генов с использованием морфологических нарушений хромосом (транслокаций и делеций).
  • 51. Картирование генов у человека: метод днк-зондов.
  • 53. Митоз и его биологическое значение. Проблемы клеточной пролиферации в медицине.
  • 54. Мейоз и его биологическое значение
  • 55. Сперматогенез. Цитологические и цитогенетические характеристики.
  • 56. Овогенез. Цитологические и цитогенетические характеристики.
  • 58. Взаимодействие неаллельных генов. Комплементарность.
  • 59. Взаимодействие неаллельных генов. Эпистаз, его виды
  • 60. Взаимодействие неаллельных генов. Полимерия, ее виды.
  • 61. Хромосомная теория наследственности. Полное и неполное сцепление генов.
  • 62. Зигота, морула и формирование бластулы.
  • 63. Гаструляция. Типы гаструл.
  • 64. Основные этапы эмбриогенеза. Зародышевые листки и их производные. Гисто - и органогенез.
  • 65. Провизорные органы. Анамнии и амниоты.
  • 66. Генетическая структура популяции. Популяция. Дем. Изолят. Механизмы нарушения равновесия генов в популяции.
  • 68. Генетический груз, его биологическая сущность. Генетический полиморфизм.
  • 69. История становления эволюционных идей.
  • 70. Сущность представлений Дарвина о механизмах эволюции живой природы.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.
  • 72. Учение а.И.Северцова о филэмбриогенезах.
  • 73. Вид. Популяция - элементарная единица эволюции. Основные характеристики популяции.
  • 74. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция и их характеристика.
  • 75. Формы видообразования и их характеристика.
  • 76. Формы естественного отбора и их характеристика.
  • 78. Предмет антропологии, ее задачи и методы
  • 79. Конституциональные варианты человека в норме по Сиго.
  • 80. Конституциональные варианты человека в норме по э.Кречмеру.
  • 81. Конституциональные варианты человека в норме по в.Н.Шевкуненко и а.М.Геселевич.
  • 82.Конституциональные варианты человека в норме по Шелдону
  • 83. Доказательства животного происхождения человека.
  • 84.Место человека в системе классификации в системе животного мира. Морфо-физиологические отличия человека от приматов.
  • 85. Палеонтологические данные о происхождении приматов и человека.
  • 86. Древнейшие люди - архантропы.
  • 87. Древние люда - палеоантропы.
  • 88. Неоантропы.
  • 89.Расы - как выражение генетического полиморфизма человечества.
  • 90.Биоценоз, биотоп, биогеоценоз, компоненты биогеоценоза.
  • 91.Экология как наука. Направления экологии.
  • 93.Глобальные экологические проблемы.
  • 94.Абиотические факторы: энергия Солнца; температура.
  • 95. Абиотические факторы: осадки, влажность; ионизирующие излучения.
  • 96. Экосистема. Виды экосистем.
  • 97. Адаптивные экологические типы человека. Тропический адаптивный тип. Горный адаптивный тип.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.

    Палеонтологические доказательства эволюции . Ископаемые остатки - основа восстановления облика древних организмов. Сходство ископаемых и современных организмов - доказательство их родства. Условия сохранения ископаемых остатков и отпечатков древних организмов. Распространение древних, примитивных организмов в наиболее глубоких слоях земной коры, а высокоорганизованных - в поздних слоях.

    Переходные формы (археоптерикс, зверозубый ящер), их роль в установлении связей между систематическими группами. Филогенетические ряды - ряды последовательно сменяющих друг друга видов (на примере эволюции лошади или слона).

    2. Сравнительно-анатомические доказательства эволюции :

    1) клеточное строение организмов. Сходство строения клеток организмов разных царств;

    2) общий план строения позвоночных животных - двусторонняя симметрия тела, позвоночник, полость тела, нервная, кровеносная и другие системы органов;

    3) гомологичные органы, единый план строения, общность происхождения, выполнение различных функций (скелет передней конечности позвоночных животных);

    4) аналогичные органы, сходство выполняемых функций, различие общего плана строения и происхождения (жабры рыбы и речного рака). Отсутствие родства между организмами с аналогичными органами;

    5) рудименты - исчезающие органы, которые в процессе эволюции утратили значение для сохранения вида (первый и третий пальцы у птиц в крыле, второй и четвертый пальцы у лошади, кости таза у кита);

    6) атавизмы - появление у современных организмов признаков предков (сильно развитый волосяной покров, многососковость у человека).

    3. Эмбриологические доказательства эволюции :

    1) при половом размножении развитие организмов из оплодотворенной яйцеклетки;

    2) сходство зародышей позвоночных животных на ранних стадиях их развития. Формирование у зародышей признаков класса, отряда, а затем рода и вида по мере их развития;

    3) биогенетический закон Ф. Мюллера и Э. Гек-келя - каждая особь в онтогенезе повторяет историю развития своего вида (форма тела личинок некоторых насекомых - доказательство их происхождения от червеобразных предков).

    72. Учение а.И.Северцова о филэмбриогенезах.

    ФИЛЭМБРИОГЕНЕ́З - эволюционное изменение онтогенеза органов, тканей и клеток, связанное как с прогрессивным развитием, так и с редукцией. Учение о филэмбриогенезе разработано российским биологом-эволюционистом А.Н. Северцовым. Модусы (способы) филэмбриогенеза различаются по времени возникновения в процессе развития этих структур.Если развитие определенного органа у потомков продолжается после той стадии, на которой оно заканчивалось у предков, происходит анаболия (от греч.anabole- подъем) - надставка конечной стадии развития. Примером может служить формирование четырехкамерного сердца у млекопитающих. У земноводных сердце трехкамерное: два предсердия и один желудочек. У пресмыкающихся в желудочке развивается перегородка (первая анаболия), однако эта перегородка у большинства из них неполная - она только уменьшает перемешивание артериальной и венозной крови. У крокодилов и млекопитающих развитие перегородки продолжается до полного разделения правого и левого желудочков (вторая анаболия). У детей иногда как атавизм межжелудочковая перегородка бывает недоразвитой, что ведет к тяжелому заболеванию, требующему хирургического вмешательства.

    Продление развития органа не требует глубоких изменений предшествующих стадий его онтогенеза, поэтому анаболия - наиболее распространенный способ филэмбриогенеза. Предшествующие анаболиям стадии развития органов остаются сопоставимыми с этапами филогенеза предков (т. е. являются рекапитуляциями) и могут служить для его реконструкции (см. Биогенетический закон). Если развитие органа на промежуточных стадиях уклоняется от того пути, по которому шел его онтогенез у предков, происходит девиация. Например, у рыб и у пресмыкающихся чешуи возникают как утолщения эпидермиса и подстилающего его соединительно-тканного слоя кожи - кориума. Постепенно утолщаясь, эта закладка выгибается наружу. Затем у рыб кориум окостеневает, формирующаяся костная чешуя протыкает эпидермис и выдвигается на поверхность тела. У пресмыкающихся, напротив, кость не образуется, но эпидермис ороговевает, образуя роговые чешуи ящериц и змей. У крокодилов кориум может окостеневать, образуя костную основу роговых чешуй. Девиации приводят к более глубокой, чем анаболии, перестройке онтогенеза, поэтому они встречаются реже.

    Реже всего возникают изменения первичных зачатков органов - архаллаксисы. При девиации рекапитуляцию можно проследить от закладки органа до момента уклонения развития. При архаллаксисе рекапитуляции нет. Примером может служить развитие тел позвонков у земноводных. У ископаемых земноводных - стегоцефалов и у современных бесхвостых земноводных тела позвонков формируются вокруг хорды из нескольких, обычно трех с каждой стороны тела, отдельных закладок, которые затем сливаются, образуя тело позвонка. У хвостатых земноводных эти закладки не возникают. Окостенение разрастается сверху и снизу, охватывая хорду, так что сразу образуется костная трубка, которая, утолщаясь, становится телом позвонка. Этот архаллаксис является причиной до сих пор дискутируемого вопроса о происхождении хвостатых земноводных. Одни ученые считают, что они произошли непосредственно от кистеперых рыб, независимо от остальных наземных позвоночных. Другие - что хвостатые земноводные очень рано дивергировали от остальных земноводных. Третьи, пренебрегая развитием позвонков, доказывают близкое родство хвостатых и бесхвостых земноводных.

    Редукция органов , утративших свое адаптивное значение, тоже происходит путем филэмбриогенеза, главным образом, посредством отрицательной анаболии - выпадения конечных стадий развития. При этом орган либо недоразвивается и становится рудиментом, либо претерпевает обратное развитие и полностью исчезает. Примером рудимента может служить аппендикс человека - недоразвитая слепая кишка, примером полного исчезновения - хвост головастиков лягушек. В течение всей жизни в воде хвост растет, на его конце добавляются новые позвонки и мышечные сегменты. Во время метаморфоза, когда головастик превращается в лягушку, хвост рассасывается, причем процесс идет в обратном порядке - от конца к основанию. Филэмбриогенез - основной способ адаптивного изменения строения организмов в ходе филогенеза.

    Основные группы аргументов:

    1. Наблюдаемая эволюция

    2. Эволюционное дерево

    3. Палеонтологические доказательства

    4. Морфологические доказательства

    5. Эмбриологические доказательства

    6. Молекулярно-генетические и биохимические доказательства

    7. Биогеографические доказательства

    1. Наблюдаемая эволюция

    Все наблюдаемые виды мутаций (например, создание копий генов с разделением ф-ий между копиями – гомеозисные гены) как основа эволюционных новшеств

    Различие хромосомных наборов (ХН) – не препятствие для скрещивания (полиморфизм ХН у кабана; многие растения получились путем объединения наборов хромосом)

    2. Эволюционное дерево

    Биологический вид - единственное точно обозначаемое понятие в эволюции и единица классификации (рода, семейства и проч. – не имеют четких самостоятельных критериев) по критерию полного или почти полного отсутствия скрещиваний с другими видами в природе (а не генетической несовместимости!). Это главный но не единственный критерий.

    Эволюционные деревья, построенные по разным данным (по отдельным генам, некодирующим участкам, морфологическому строению, палеонтологической летописи, эмбриологии), соответствуют друг другу. Это совпадение без труда объясняется эволюционной теорией

    3. Палеонтологические доказательства

    Ископаемая летопись постоянно пополняется.

    Принцип суперпозиции геологических слоев Стенона и основанная на нем наука стратиграфия позволяют, сравнивая ископаемые формы из последовательных напластований, делать выводы о направлениях эволюции. Для оценки возраста окаменелостей используются методы датировки, которые разделяются на относительные (стратиграфические) и абсолютные (радиометрические методы, люминисцентные, методы электронно-парамагнитного резонанса и др.). Эти независимые оценки хорошо совпадают!

    При взгляде на палеонтологическую летопись видно постепенное накопление все новых форм организмов от прошлого к современности.

    Первые простейшие одноклеточные появляются приблизительно 3.5 млрд лет назад. Первые одноклеточные эукариоты появляются 1.75 млрд лет назад. Еще через миллиард лет, немногим более 635 млн лет назад, в палеонтологической летописи появляются первые многоклеточные животные - губки. Через несколько десятков млн лет находим первых червей и моллюсков, а еще через 15 млн лет - первых примитивных позвоночных, похожих на современных миног.

    Насекомые - 400 млн лет назад, и еще 100 млн лет суша покрыта папоротниками и населена насекомыми и земноводными. С 230 по 65 млн лет назад на Земле господствуют динозавры, самые распространенные растения - саговники и другие голосеменные. Первые цветковые растения появляются 100 млн лет назад. Чем ближе к современности, тем больше сходства имеют ископаемые флоры и фауны с современными.


    Наблюдаемая картина соответствует эволюционной теории и не имеет других научных объяснений (всемирный потоп и катастрофизм не выдерживают научной критики)

    «Микро-» и «макроэволюция» ничем принципиально не отличаются. Макроэволюция - это просто сумма множества последовательных микроэволюционных событий. Наблюдать можно только ее итог, но не сам процесс, который длится миллионы лет.

    4. Морфологические доказательства

    Если идея эволюции верна, мы должны наблюдать в живой природе повсеместные следы происхождения путем модификации, то есть многочисленные свидетельства "переделки" и "подгонки" старых признаков (органов, тканей, планов строения) под новые условия (экологические ниши) и новые задачи (функции). Именно это мы и наблюдаем в природе.

    Гомологичные органы

    Органы животных разных видов, имеющие один и тот же план строения, занимающие сходное положение в организме и развивающиеся из одних и тех же зачатков, называют гомологичными. Если такие органы со сходным строением у разных видов выполняют разные функции, то единственное тому простое объяснение - происхождение от общего предка

    Рудименты

    Органы, утратившие своё основное значение в процессе эволюции. Это также структуры, редуцированные и обладающие меньшими возможностями по сравнению с соответствующими структурами у других организмов. Многие рудиментарные органы не являются бесполезными и выполняют второстепенные функции.

    Желудочно-кишечный тракт млекопитающих пересекается с дыхательными путями, в результате мы не можем одновременно дышать и глотать, а кроме того можем подавиться. Эволюционное объяснение этого заключается в том, что предками млекопитающих являются кистепёрые рыбы, которые заглатывали воздух, чтобы дышать и легкие у них сформировались как выросты пищевода.

    Атавизмы

    Появление у особи признаков, свойственных отдаленным предкам. Появление атавизмов объясняется тем, что гены, отвечающие за данный признак, сохранились в ДНК, и в норме подавляются действием других генов, но иногда проявляют себя. Признаки, ставшие бесполезными, могут сохраняться в течение миллионов лет в виде записи в ДНК, постепенно редуцируясь и разрушаясь под грузом мутаций.

    Примеры атавизмов:

    1. Хвостовидный придаток у человека;

    2. Сплошной волосяной покров на теле человека;

    3. Добавочные пары молочных желез;

    4. Задние ноги у китов;

    5. У куриного эмбриона в челюстях могут формироваться зачатки зубов;

    6. Задние ноги у змей;

    7. Дополнительные пальцы у лошадей;

    5. Эмбриологические доказательства

    Свидетельства эволюции в индивидуальном развитии организмов

    1) Эволюционируют (меняются) не взрослые организмы и их признаки, а генетические программы их индивидуального развития (онтогенеза). Данные эмбриологии свидетельствуют о том, что алгоритм развития каждого вида живых организмов является модификацией алгоритмов развития его предков.

    2) Генетическая программа онтогенеза многоклеточных животных, как ни странно, сама по себе содержит меньше информации, чем получающийся на ее основе взрослый организм. Новая информация "самозарождается" в ходе онтогенеза (процесс самоорганизации) с участием окружающей среды. Гены не кодируют форму конечности в точности, они лишь задают ее положение и основные части. При этом есть «разрешенные» и «запрещенные» состояния системы (аналоги – снежинки, шахматы).

    3) Индивидуальное развитие многоклеточных организмов довольно часто повторяет отдельные этапы его эволюционной истории (биогенетический закон). Это связано с тем что эволюционно более ранние приобретения уже давно связаны с другими жизненно важными признаками и их изменение нежелательно, а более поздние признаки еще пластичны и могут меняться. Поэтому приобретение нового идет по «принципу аддитивности», т.е. добавления или надстройки нового к старому.

    Даже очень непохожие друг на друга животные проходят одинаковые ранние стадии развития: зигота (оплодотворенное яйцо), бластула, гаструла и др., повторяя этапы перехода к многоклеточности и другие эволюционные приобретения. У всех позвоночных животных наблюдается сходство зародышей на ранних стадиях развития: форма тела, зачатки жаберных дуг, хвост, один круг кровообращения и т. д. (закон зародышевого сходства Карла Бэра). Но по мере развития сходство между зародышами постепенно стирается и начинают преобладать черты, свойственные их классам, семействам, родам, и, наконец, видам.

    Kрупные морфологические перестройки могут быть обусловлены не только генетическими, но и так называемыми эпигенетическими механизмами, связанными с управлением и регуляцией работы генов.

    6. Молекулярно-генетические и биохимические доказательства

    Молекулярно-генетические

    1) Выяснение того факта, что ДНК постоянно мутирует является обоснованием теории эволюции (без изменчивости нет Э. теории). Несмотря на мутации «вещество наследственности" (полинуклеотиды ДНК и РНК), и генетический код оказались одинаковыми у всех без исключения форм жизни - от вирусов до человека – что соотвествует представлению об их изначальном родстве с точки зрения эволюции.

    Эволюционная теория в отличие от антиэволюционистов может логически объяснить почему генетический код практически не меняется в ходе всей эволюции и одинаков у всех организмов. Предположим что тРНК мутировала и стала кодировать данную АК другим кодоном. Тогда во ВСЕХ белках клетки где это случилось произойдет взаимозамена этих АК и все белки изменятся. Если это произошло в гамете, то она даже не разовьется в организм. Т.е. это безусловно элиминируется отбором как крайне вредная мутация. Такой жесткий контроль должен был происходить даже в самом начале эволюции, когда видов было еще совсем мало. На самом деле снабдить разные виды существ разными генетическими кодами было бы очень заманчиво – это оградило бы их, например, от проникновения чужих вирусов. Более того – это теоретически вполне возможно.

    2) Различия между геномами видов хорошо соответствуют независимо построенным филогенетическом деревьям и палеонтологической летописи. Оценки родства и времени расхождения видов по «молекулярным часам» обычно лишь дополняет и уточняет эволюционную картину.

    Пример : согласно данным палеонтологии, общий предок человека и шимпанзе жил примерно 6 миллионов лет назад (ископаемые находки оррорина и сахелантропа - форм, морфологически близких к общему предку человека и шимпанзе). Для того, чтобы получилось наблюдаемое число различий между геномами (1%), на каждый миллиард нуклеотидов должно было приходиться в среднем 30 изменений за одно поколение. Сегодня у людей скорость мутаций составляет 10-50 изменений на миллиард нуклеотидов за одно поколение, т.е. результаты совпадают.

    3) Несмотря на то, что белки сохраняют функции и после многих замен АК, и несмотря на избыточность генетического кода, позволяющего разные варианты нуклеотидных последовательностей без изменения структуры белков (т.е. нейтральные мутации) -аминокислотные последовательности большинства белков у близкородственных видов (например, у шимпанзе и человека), как правило, очень похожи, что можно объяснить только происхождением от общего предка. Так, подавляющее большинство гомологичных белков человека и шимпанзе различаются лишь на 1-2 аминокислоты или не различаются вовсе.

    4) Установление родства по сходству ДНК откалибровано на группах людей с детально известной и датированной родословной очень точно (население Исландии, царские династии и проч.). Это позволяет применять метод и для восстановления связей даже там где нет исторических данных. Так родство человека и шимпанзе устанавливается даже не по высокому сходству ДНК (ядерной - на 99%, митохондриальной на 91% - т.к. там мутации на порядок чаще), а по преобладанию нейтральных мутаций (без замен АК) над значимыми в 7-8 раз, что и предсказывается эволюционной теорией. Кроме того в большинстве случаев (44 из 58) для кодирования одной и той же аминокислоты в геноме человека и шимпанзе используется один и тот же триплет хотя мог бы использоваться другой (пример: АК треонин кодируется любым из четырех кодонов: ACA, ACT, ACG, ACC). Вероятность случайного совпадения здесь ничтожна.

    Для человека шимпанзе и горилла по такому же совпадению нейтральных мутаций ДНК – это ближайшие виды-родственники, а макака - дальний. Результаты сравнения генов и белков подтверждают представления о родственных связях между видами (эволюционном древе), которые сложились задолго до "прочтения" геномов. Аналогичные результаты получаются при сравнении практически любых генов в любых группах организмов. Каждый может убедиться в этом лично, поскольку все прочтенные гены и программное обеспечение для их анализа находятся в свободном доступе.

    Биохимическое единство жизни

    Если не бояться замены выражения «единство происхождения» на «единство творения» то общие биохимические черты жизни можно было бы тоже считать доказательством общего эволюционного происхождения.

    В ДНК всех организмов используются 4 нуклеотида (аденин, гуанин, тимин, цитозин), хотя в природе встречаются не менее 102 различных нуклеотидов. Кроме того, в природе встречается 390 различных АК тогда как живым используется только 20+2. Код используется тоже единый, хотя возможно 1.4*1070 различных эквивалентных генетических кодов. Даже направление закрученности одного типа биомолекул одинаково (ДНК – вправо, белки – влево). У всех есть гликолиз и АТФ.

    Но единство именно происхождения, а не творения, в данном случае лучше доказывают как раз мелкие различия на фоне бесспорного сходства.

    2-я хромосома человека

    После слияния двух хромосом остаются характерные следы: остатки теломер и рудимертарная центромера. У всех человекообразных обезьян 24 пары хромосом, за исключением людей, у которых их 23. Человеческая 2-я хромосома является результатом слияния двух хромосом предков.

    Эндогенные ретровирусы

    Эндогенные ретровирусы (ЭР)- следы древних вирусных инфекций в ДНК (1% ДНК человека). Ретровирусы встраиваются в геном случайным образом, вероятность независимой встройки одинаковых вирусов на одинаковые позиции у двух разных организмов пренебрежимо мала. А значит, встроенный геном одного и того же ретровируса может присутствовать у двух животных на одной и той же позиции в ДНК только в том случае, если эти животные произошли от общего предка.

    Действительно распространение ЭР в хорошо изученных группах видов (приматы) соответствует независимо построенному филогенетическому древу: чем ближе виды эволюционно, тем больше у них сходства картины встроенных в ДНК ЭР.

    Псевдогены

    Это неработающие, "молчащие" гены, которые возникают в результате мутаций, выводящих нормальные "рабочие" гены из строя. Это «генетические рудименты», которые могут много рассказать о прошлом данного вида.

    Пример: ярким доказательством эволюции является присутствие одинаковых псевдогенов в одних и тех же местах генома у видов, произошедших недавно от общего предка. Так, у человека есть псевдоген GULO, который представляет собой "сломанный" ген фермента синтеза аскорбиновой кислоты. У других приматов обнаружен точно такой же псевдоген, причем мутационная "поломка"у него такая же, как и в человеческом псевдогене. Причины: в связи с переходом предков современных приматов к питанию растительной пищей, богатой витамином C, этот ген перестал быть необходимым.

    У других млекопитающих (например, у крысы) GULO является не псевдогеном, а работающим геном, и поэтому крысам не нужно получать витамин C с пищей: они синтезируют его сами. В группах млекопитающих, которые независимо от приматов перешли к питанию пищей, богатой витамином С, тоже произошла псевдогенизация гена GULO, но мутации, выведшие ген из строя, у них были другие (пример – морские свинки).

    7. Биогеографические доказательства

    Географическое распространение животных и растений соответствует их эволюционной истории

    Если два вида недавно произошли от одной популяции, то они как правило обитают недалеко от ареала исходной популяции, а значит недалеко друг от друга. Таким образом, с точки зрения эволюционной теории географическое распределение видов должно быть совместимо с филогенетическим деревом. Если не принимать во внимание теорию эволюции, то разумно предположить, что виды живут в наиболее подходящих для них условиях. Теория эволюции же предсказывает, что должно быть много благоприятных для вида мест, в которых представители вида тем не менее отсутствуют в связи с наличием географических барьеров. Так и есть в природе.

    Примеры: сумчатые встречаются почти исключительно в Австралии (раньше они водились и на других материках, но впоследствии вымерли вытесненные плацентарными конкурентами). Но условия Австралии вполне подходят для плацентарных - так завезенные кролики и собаки заселили весь континент. Двоякодышашие рыбы и бескилевые птицы (страусы, киви) встречаются только на юге Южной Америки, Африки и Австралии (расхождение Гондваны в мезозое). Условия обитания в пустынях Африки, Америки и Австралии очень похожи, и растения из одной пустыни хорошо растут в другой. Тем не менее, кактусы были обнаружены только в Америке.

    Островная биогеография

    Примеры: в Новой Зеландии до появления человека не было змей, и даже млекопитающих, но было много эндемичных древних птиц и растений. На Гавайских островах тоже живет множество эндемичных (нигде больше не встречающихся) птиц, растений и насекомых, но на них полностью отсутствуют местные пресноводные рыбы, амфибии, рептилии и наземные млекопитающие. Сейчас завезенные людьми млекопитающие заполнили эти о-ва и вытесняют местную фауну. На Галапагоссах есть эндемичные птицы, случайно завезенные туда игуана и черепахи, но нет млекопитающих, амфибий и пресноводных рыб. Исключение – только летучие мыши. При этом на тех же островах местные эндемичные виды дали мощную близкородственную радиацию (пример – вьюрки на Галапагоссах). Или почему предполагаемый разумный дизайнер создал эндемичные виды летучих мышей на островах, но не создал там других млекопитающих? Объясняется это просто: наземные млекопитающие практически неспособны пересекать широкие проливы, а летучие мыши умеют летать.

    Еще одним свидетельством в пользу эволюции является высокое сходство островных флор и фаун с флорами и фаунами ближайших массивов суши. Например, животный и растительный мир Галапагосских островов, несмотря на все своеобразие, явно связан тесными родственными связями с флорой и фауной ближайшего материка - Южной Америки. Там где по суше возник переход - фауны переходят одна в другую в соответствии с временем образования этого перехода (Берингийская суша, Панамский перешеек). Например в Ю.Америке очень своеобразная флора и фауна (броненосцы, ламы, муравьеды), но нет сейчас местных копытных, тк они давно вымерли, а новые не смогли туда снова проникнуть с севера. Причем чем южнее – тем она своеобразнее (это коррелирует с геологическим временем изоляции) (см. Дж. Симпсон «Великолепная изоляция» 1980).

    Соответствие резкости биогеографических границ между фаунами геологической истории

    Там где по суше возник переход - фауны переходят одна в другую в соответствии с временем образования этого перехода (Берингийская суша, Панамский перешеек). Например в Ю.Америке очень своеобразная флора и фауна (броненосцы, ламы, муравьеды), но нет сейчас местных копытных, тк они давно вымерли, а новые не смогли туда снова проникнуть с севера. Причем чем южнее – тем она своеобразнее (это коррелирует с геологическим временем изоляции). Верблюды и мозоленогие имеют североамериканское происхождение, а дальше группа распространялась с одного конца в Южную Америку, с другого - в Старый Свет через берингийский перешеек. На месте своего возникновения они вымерли, что подтверждает набор ископаемых.

    Заселение изолированных территорий

    Попав на большой остров с бедной фауной (или, для водных животных - в большое озеро), виды-вселенцы с большой вероятностью испытают адаптивную радиацию - быстрое видообразование, в ходе которого они займут ряд свободных экологических ниш. Кроме галапагосских вьюрков, хорошие примеры таких быстрых адаптивных радиаций - это рачки-бокоплавы озера Байкал (зачем Создателю нужно было создавать специально для озера Байкал 250 нигде больше не встречающихся видов рачков-бокоплавов, пусть антиэволюционисты придумывают сами), рыбы-цихлиды Великих Африканских озер (Малави, Виктория), мушки дрозофилы и птицы нектарницы Гавайских островов и др.

    Параллельная эволюция на разобщенных массивах суши

    Трудно объяснить иначе, как с точки зрения эволюции, почему на разных континентах существуют внешне сходные формы, но совершенно разные по ряду других, более глубоких признаков, больше роднящих их с внешне непохожими видами на том же континенте. Так, Внешне сумчатая летяга больше похожа на обычную летягу, чем на сумчатого крота или сумчатого муравьеда. Однако по анатомическим и эмбриологическим признакам, а также по нуклеотидным последовательностям ДНК, она гораздо ближе к другим австралийским сумчатым. Поэтому ее и относят к отряду сумчатых, а белку-летягу - к отряду грызунов.

    Распространение ископаемых видов согласуется с эволюционным деревом и палеогеографическими реконструкциями

    Древнейшие окаменелости сумчатых найдены в Северной Америке, их возраст около 80 млн лет. 40 миллионов лет назад сумчатые уже были распространены в Южной Америке, но в Австралии, где они сейчас доминируют, сумчатые появились только около 30 млн лет назад. Теория эволюции предсказывает, что австралийские сумчатые произошли от американских. Согласно теории тектоники плит 30-40 млн лет назад Южная Америка и Австралия еще оставались частью Гондваны, крупного континента в южном полушарии, а между ними находилась будущая Антарктида. На основании двух теорий исследователи предсказали, что сумчатые мигрировали из Южной Америки в Австралию через Антарктиду 30-40 миллионов лет назад. Это подтвердилось находками в 1982г. останков сумчатых возрастом 35-40 млн лет на антарктических о-вах.

    Положение материков не было неизменным. Южная Америка с Австралией были до эоцена (30 млн лн), соединены через Антарктиду, которая в это время еще не была обмерзшая. Сумчатые действительно происходят из Северной Америки (там самые старые их находки), оттуда они проникают в Южную Америку и через Антарктиду - в Австралию. В Старом Свете сумчатые так и не проникли ни в Восточную Азию, ни в Африку по ряду причин. Поэтому заселение Австралии через север, через Зондский архипелаг, для сумчатых невозможен. Сходство крайней южной фауны и флоры Америки, Африки и Австралии с Новой Зеландией – объясняется тем, что у них был один источник – Антарктида, которая была 40 млн лет назад вполне приятным местом по климату.

    Ближайшие живые родственники современных людей - гориллы и шимпанзе - обитают в Африке. Исходя из этого, в 1872 г. Дарвин предположил, что и древних предков человека следует искать в Африке. Многие ученые последовали совету Дарвина, и начиная с 1920-х годов в Африке было найдено множество промежуточных форм между человеком и человекообразными обезьянами. Если бы ископаемых австралопитеков обнаружили, например, в Австралии, а не в Африке, то теорию эволюции пришлось бы пересматривать.

    Эмбриологические

    В эмбриональном (зародышевом) развитии организмы имеют признаки своих эволюционных предков. Например,

    • все организмы начинают развитие с одноклеточной стадии (зиготы);
    • двуслойный зародыш (гаструла) соответствует кишечнополостным;
    • близкородственные организмы имеют сходные стадии зародышевого развития (сходную последовательность закладки органов);
    • зародыш человека покрыт шерстью, имеет хвост – это говорит о происхождении человека от животных.

    Палеонтологические

    1) Ископаемые остатки и отпечатки (окаменелости) древних организмов показывают, как шло их историческое развитие (эволюция).


    2) Филогенетические ряды - это ряды видов, последовательно сменявших друг друга в процессе эволюции.


    3) Переходные формы (доказывают происхождение организмов):

    • кистеперая рыба латимерия и стегоцефал - земноводных от рыб;
    • археоптерикс - птиц от пресмыкающихся.

    Биогеографические

    Флора и фауна (ФФ) вулканических островов

    • очень бедна, потому что животным и растениям тяжело попасть с материка на новый остров;
    • содержит много эндемиков (видов, обитающими только здесь).

    ФФ островов, отколовшихся от материка, очень похожа на ФФ материка; чем раньше произошло отделение - тем больше отличия.

    Биохимические

    Все живые организмы на Земле состоят в основном из белков; наследственная информация закодирована в нуклеиновых кислотах, одинаково происходят процессы репликации, транскрипции, трансляции, гликолиза и т.п. Всё это свидетельствует о единстве органического мира.

    1. Установите соответствие между примером и типом доказательств эволюции, к которому этот пример относят: 1) палеонтологические, 2) сравнительно-анатомические
    А) переходные формы
    Б) гомологичные органы
    В) рудименты
    Г) единый план строения органов
    Д) окаменелости
    Е) атавизмы

    Ответ


    2. Установите соответствие между примером и типом доказательств эволюции животного мира, который он иллюстрирует: 1) сравнительно-анатомические, 2) палеонтологические
    А) филогенетический ряд лошади
    Б) наличие копчика в скелете человека
    В) перо птицы и чешуя ящерицы
    Г) отпечатки археоптерикса
    Д) многососковость у человека

    Ответ


    3. Установите соответствие между примерами и методами изучения эволюции: 1) палеонтологические, 2) сравнительно-анатомические. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) крыло птицы и крыло бабочки


    Г) многососковость у шимпанзе
    Д) аппендикс у человека

    Ответ


    4. Установите соответствие между примерами объектов и методами изучения эволюции, в которых используются эти примеры: 1) палеонтологический, 2) сравнительно-анатомический. Запишите цифры 1 и 2 в правильном порядке.
    А) колючки кактуса и колючки барбариса
    Б) останки зверозубых ящеров
    В) филогенетический ряд лошади
    Г) многососковость у человека
    Д) аппендикс у человека

    Ответ


    5. Установите соответствие между примерами и доказательствами эволюции, которые этими примерами иллюстрируются: 1) палеонтологические, 2) сравнительно-анатомические. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) останки зверозубого ящера
    Б) отпечатки археоптерикса на породах
    В) наличие хвоста у человека
    Г) филогенетический ряд лошади
    Д) филогенетический ряд слона
    Е) многососковость у человека

    Ответ


    1. Выберите из текста три предложения, в которых описываются палеонтологические доказательства эволюции. Запишите цифры, под которыми они указаны. (1) История развития органического мира на Земле сохранилась в виде ископаемых остатков. (2) Доказано, что у близкородственных групп организмов белки сходны по аминокислотному составу. (3) Например, гемоглобин у человека и шимпанзе идентичен, а между гемоглобином человека и гориллы отличия в двух аминокислотах. (4) Известно, что план строения наземных позвоночных одинаков у различных классов. (5) Обнаружены переходные формы от водорослей к высшим растениям - это псилофиты. (6) В царстве животных восстановлена эволюция многих групп, составлены филогенетические ряды.

    Ответ


    2. Прочитайте текст. Выберите три предложения, в которых указаны палеонтологические методы изучения эволюции. Запишите цифры, под которыми они указаны. (1) Переходные формы – это организмы, сочетающие признаки и древних, и молодых групп крупных систематических таксонов. (2) Риниофиты были первыми наземными растениями. (3) В.О.Ковалевский создал филогенетический ряд лошади и доказал постепенность процесса эволюции. (4) Сопоставляя флору и фауну различных континентов, ученые восстанавливают ход эволюции. (5) В озере Байкал обитает много эндемичных видов.

    Ответ


    Выберите один, наиболее правильный вариант. Какой стадии эмбрионального развития соответствует строение пресноводной гидры
    1) бластуле
    2) гаструле
    3) нейруле
    4) зиготе

    Ответ


    Выберите один, наиболее правильный вариант. Пресмыкающиеся произошли от
    1) кистеперых рыб
    2) стегоцефалов
    3) ихтиозавров
    4) археоптериксов

    Ответ


    1. Выберите из текста три предложения, в которых даны описания эмбриологических доказательств эволюции. Запишите в таблицу цифры, под которыми они указаны. (1) Существует связь между онтогенезом и историческим развитием вида - филогенезом. (2) У представителей близких систематических групп проявляется сходство в строении и функциях многих систем органов. (3) Ф. Мюллер и Э. Геккель сформулировали биогенетический закон «Онтогенез - есть краткое и быстрое повторение филогенеза». (4) Повторение признаков объясняется тем, что на разных стадиях развития зародыша включаются сохранившиеся гены далеких предков. (5) В пользу эволюции свидетельствуют рудименты, органы, утратившие свое значение для вида. (6) К рудиментам относят наличие копчиковых позвонков, волосяной покров на конечностях человека.

    Ответ


    2. Прочитайте текст. Выберите три предложения, в которых указаны эмбриологические методы изучения эволюции. Запишите цифры, под которыми они указаны.
    (1) Тело зародыша хордовых делится на головной, туловищный, хвостовой отделы. (2) У зародыша закладываются жаберные щели. (3) Развитие эмбриона проходит стадии бластулы, гаструлы, нейрулы. (4) У человека присутствуют рудиментарные органы. (5) Клетки эмбриона человека имеют 46 хромосом.

    Ответ


    3. Выберите из текста «Доказательства эволюции» три предложения, в которых даны описания эмбриологических доказательств. Запишите цифры, под которыми они указаны.
    (1) На ранних стадиях развития зародыши разных классов одного типа имеют сходное строение. (2) Особи одного класса животных сходны по внутреннему и внешнему строению. (3) В соответствии с биогенетическим законом «Онтогенез есть краткое и быстрое повторение филогенеза». (4) У всех многоклеточных тканевых животных онтогенез начинается с дробления зиготы с формированием бластулы, гаструлы, нейрулы. (5) Наличие у животных рудиментов и атавизмов служит свидетельствами эволюции видов. (6) К рудиментам человека относят наличие копчиковых позвонков, волосяного покрова, зубов мудрости. (7) К атавизмам человека относят густой волосяной покров на всем теле, многососковость.

    Ответ


    Выберите один, наиболее правильный вариант. К эмбриологическим доказательствам эволюции относят
    1) ископаемые остатки
    2) рождение людей с увеличенным числом хвостовых позвонков
    3) волосяной покров человеческого зародыша
    4) сходство в строении конечностей птиц и млекопитающих

    Ответ


    1. Установите соответствие между примерами и доказательствами эволюции, которым они соответствуют: 1) эмбриологические, 2) сравнительно-анатомические. Запишите цифры 1 и 2 в правильном порядке.
    А) онтогенез шимпанзе начинается с зиготы
    Б) крыло птицы и лапа крота – гомологичные органы
    В) рудименты тазового пояса кита и конечностей питона
    Г) наличие жаберных щелей у зародыша млекопитающего
    Д) стадия бластулы в онтогенезе позвоночных

    Ответ


    2. Установите соответствие между примерами и доказательствами эволюции: 1) сравнительно-анатомические, 2) эмбриологические. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) рудименты третьего века у человека
    Б) закладка жаберных карманов у зародыша человека
    В) гомологичные органы - крыло птицы и ласта кита
    Г) образование вторичного рта в стадии развития хордового животного
    Д) начало онтогенеза с зиготы
    Е) единый план строения конечностей позвоночных животных

    Ответ


    Выберите один, наиболее правильный вариант. Формирование в процессе эволюции у кистеперых рыб легких и плавников особого строения позволило считать их предками
    1) костных рыб
    2) хрящевых рыб
    3) земноводных
    4) пресмыкающихся

    Ответ


    Выберите один, наиболее правильный вариант. Наличие хвоста у зародыша человека на ранней стадии развития свидетельствует о
    1) возникших мутациях
    2) проявлении атавизма
    3) нарушении развития плода в организме
    4) происхождении человека от животных

    Ответ


    Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие эмбриологические доказательства эволюции подтверждают родство человека с другими позвоночными животными?
    1) закладка у зародыша жаберных щелей
    2) наличие в клетках тела эмбриона человека 46 хромосом
    3) развитие у зародыша хвостового отдела
    4) наличие гомологичных органов
    5) развитие рудиментарных органов
    6) деление тела на головной, туловищный, хвостовой отделы

    Ответ


    Установите соответствие между доказательствами эволюции и науками: 1) палеонтология, 2) сравнительная морфология. Запишите цифры 1 и 2 в правильном порядке.
    А) формы тела кита и акулы
    Б) окаменелости папоротников
    В) останки динозавров
    Г) гомологичные органы лягушки и варана
    Д) филогенетический ряд лошади
    Е) редуцированный околоцветник у ивы

    Ответ


    1. Установите соответствие между примером и группой доказательств эволюции животных: 1) палеонтологические, 2) эмбриологические. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) окаменелости моллюсков
    Б) скелетные останки мамонта
    В) жаберные щели у хордовых
    Г) личинка насекомого в янтаре
    Д) нервная трубка у рыб
    Е) хорда у позвоночных

    Ответ


    2. Установите соответствие между примерами и методами изучения эволюции: 1) палеонтологический, 2) эмбриологический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) закладка жаберных дуг в онтогенезе человека
    Б) останки зверозубых ящеров
    В) филогенетический ряд лошади
    Г) сходство зародышей классов позвоночных
    Д) сравнение флоры пермского и триасового периодов

    Ответ


    Установите соответствие между примерами и доказательствами эволюции: 1) сравнительно-анатомические, 2) палеонтологические, 3) эмбриологические. Запишите цифры 1-3 в порядке, соответствующем буквам.
    А) наличие жаберных щелей у зародышей хордовых животных
    Б) аппендикс у человека
    В) останки зверозубых ящеров
    Г) рудименты тазового пояса кита
    Д) стадии бластулы, гаструлы, нейрулы в развитии многоклеточных животных
    Е) филогенетический ряд слонов

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие методы исследования используют для изучения эволюционных процессов?
    1) гибридологический
    2) физиологический
    3) палеонтологический
    4) сравнительно-анатомический
    5) полиплоидизации

    Ответ


    © Д.В.Поздняков, 2009-2019

    Научные доказательства эволюции (эмбриологические, морфологические, палеонтологические, биогеографические и т.д.)

    Эмбриологические доказательства

    У всех позвоночных животных наблюдается значительное сходство зародышей на ранних стадиях развития: у них похожая форма тела, есть зачатки жаберных дуг, имеется хвост, один круг кровообращения и т. д. Однако по мере развития сходство между зародышами различных систематических групп постепенно уменьшается, и начинают преобладать черты, свойственные их классам, отрядам, семействам, родам, и, наконец, видам.

    Эволюционные изменения могут касаться всех фаз онтогенеза, то есть могут приводить к изменениям не только зрелых организмов, но и эмбрионов, даже на первых этапах развития. Тем не менее, более ранние фазы развития должны отличаться большим консерватизмом, чем более поздние, так как изменения на более ранних этапах развития, в свою очередь, должны привести к большим изменениям в процессе дальнейшего развития. Например, изменение типа дробления вызовет изменения в процессе гаструляции, равно как и во всех следующих стадиях. Поэтому изменения, проявляющиеся на ранних этапах, гораздо чаще оказываются летальными, чем изменения, касающиеся более поздних периодов онтогенеза.

    Таким образом, ранние стадии развития изменяются относительно редко, а значит, изучая эмбрионы разных видов, можно делать выводы о степени эволюционного родства.

    В 1837 году эмбриолог Карл Райхерт выяснил, из каких зародышевых структур развиваютсяквадратная (и суставная кости в челюсти рептилий. У зародышей млекопитающих обнаружены те же структуры, но они развиваются в молоточек и наковальню среднего уха. Палеонтологическая летопись также подтверждает происхождение частей уха млекопитающих из костей челюсти рептилий.

    Есть многие другие примеры того, как эволюционная история организма проявляется в ходе его развития. У эмбрионов млекопитающих на ранних стадиях есть жаберные мешки, неотличимые по строению от жаберных мешков у водных позвоночных. Это объясняется тем, что предки млекопитающих жили в воде и дышали жабрами. Разумеется, жаберные мешки зародышей млекопитающих в ходе развития превращаются не в жабры, а в структуры, возникшие в ходе эволюции из жаберных щелей или стенок жаберных карманов, такие как евстахиевы трубы, среднее ухо, миндалины,паращитовидные железы и тимус.

    У эмбрионов многих видов змей и безногих ящериц (например, веретеницы ломкой) развиваются зачатки конечностей, но затем они рассасываются. Аналогично, у китов, дельфинов и морских свиней нет задних конечностей, но у эмбрионов китообразных начинают расти задние ноги, развиваются кости, нервы, сосуды, а затем все эти ткани рассасываются.



    Дарвин в качестве примера приводил наличие зубов у зародышей усатых китов.

    Биогеографические доказательства

    Среди млекопитающих Австралии преобладают сумчатые. Плацентарные млекопитающие представлены китообразными, ластоногими и рукокрылыми (которые могли перебраться в Австралию сравнительно легко), а также грызунами, которые появляются в палеонтологической летописи в миоцене, когда Австралия приблизилась к Новой Гвинее. При этом природные условия Австралии благоприятны и для других видов млекопитающих. Например, завезённые на континент кролики быстро размножились, широко расселились и продолжают вытеснять аборигенные виды. В Австралии и на Новой Гвинее, на юге Южной Америки и в Африке встречаются нелетающие бескилевые птицы, свистуны (зубастые жабы) и двоякодышащие, в других частях света они отсутствуют. Условия обитания в пустынях Африки, Америки и Австралии очень похожи, и растения из одной пустыни хорошо растут в другой. Тем не менее,кактусы были обнаружены только в Америке (за исключением Rhipsalis baccifera, по всей видимости занесённого вСтарый Свет перелётными птицами). Многие африканские и австралийские суккуленты (то есть растения, имеющие специальные ткани для запасания воды) внешне напоминают кактусы за счет конвергентной эволюции, но относятся к другимпорядкам. Морские обитатели восточных и западных берегов Южной Америки различны, за исключением некоторых моллюсков, ракообразных и иглокожих, но на противоположных берегах Панамского перешейка живёт около 30 % одних и тех же видов рыб, что объясняется недавним возникновением перешейка (около 3 млн лет назад). На большинстве океанических островов (то есть островов, которые никогда не были соединены с материком) отсутствуют наземные млекопитающие, земноводные и другие животные, не способные преодолевать значительные водные преграды. Видовой состав фауны таких островов беден и является результатом случайного заноса некоторых видов, обычно птиц, рептилий, насекомых.

    Географическое распределение видов в прошлом, которое можно частично восстановить по ископаемым останкам, также должно соответствовать филогенетическому дереву. Теория дрейфа материков и теория эволюции позволяют предсказать, где следует искать те или иные ископаемые останки. Первые окаменелости сумчатых найдены в Северной Америке, их возраст составляет около 80 млн лет. 40 млн лет назад сумчатые уже были распространены в Южной Америке, но в Австралии, где они сейчас доминируют, сумчатые появились только около 30 млн лет назад. Теория эволюции предсказывает, что австралийские сумчатые произошли от американских. Согласно теории дрейфа материков, 30-40 млн лет назад Южная Америка и Австралия ещё оставались частью Гондваны, крупного континента в южном полушарии, а между ними находилась будущая Антарктида. На основании двух теорий исследователи предсказали, что сумчатые мигрировали из Южной Америки в Австралию через Антарктиду 30-40 млн лет назад. Это предсказание сбылось: начиная с 1982 года на острове Сеймур, расположенном недалеко от Антарктиды, были найдены более десяти ископаемых сумчатых возрастом 35-40 млн лет.

    Наиболее близкие родственники современных людей - гориллы и шимпанзе - обитают в Африке. Исходя из этого, в 1872 году Чарльз Дарвин предположил, что и древних предков человека следует искать в Африке. Многие исследователи, такие как Луис, Мэри и Ричард Лики, Раймонд Дарт и Роберт Брум, последовали совету Дарвина, и начиная с 1920-х годов в Африке было найдено множество промежуточных форм между человеком и человекообразными обезьянами. Если бы ископаемых австралопитеков обнаружили, например, в Австралии, а не в Африке, то представления об эволюции гоминид пришлось бы пересматривать.

    Морфологические доказательства

    В ходе эволюции каждый новый организм не проектируется с нуля, а получается из старого за счет последовательности небольших изменений. У образовавшихся таким образом структур есть ряд характерных особенностей, указывающих на их эволюционное происхождение. Сравнительно-анатомические исследования позволяют выявить такие особенности.

    В частности, эволюционное происхождение исключает возможность целенаправленного заимствования удачных конструкций у других организмов. Поэтому у различных, не близкородственных видов для решения схожих задач используются различные органы. Например, крыло бабочки и крыло птицы развиваются из разных зародышевых листков, крылья птиц представляют собой видоизменённые передние конечности, а крылья бабочки - складки хитинового покрова. Сходство между этими органами поверхностно и является следствием их конвергентного происхождения. Такие органы называют аналогичными.

    Противоположная ситуация наблюдается у близкородственных видов: для совершенно разных задач используются схожие по строению органы. Например, передние конечности позвоночных выполняют самые разные функции, но при этом имеют общий план строения, занимают сходное положение и развиваются из одних и тех же зачатков, то есть являются гомологичными . Сходство строения крыла летучей мыши и лапы крота невозможно объяснить с точки зрения полезности. В то же время, теория эволюции даёт объяснение: единую структуру конечности четвероногие позвоночные унаследовали от общего предка .

    Каждый вид наследует от предкового вида большинство его свойств - в том числе иногда и те, которые для нового вида бесполезны. Изменения обычно происходят за счет постепенного последовательного преобразования признаков предкового вида. Сходство гомологичных органов, не связанное с условиями их функционирования - свидетельство их развития в ходе эволюции из общего прототипа, имевшегося у предкового вида. Другие примеры эволюционных изменений морфологии - рудименты,атавизмы, а также многочисленные случаи специфического несовершенства строения организмов.

    Гомологичные органы

    Гомология (биология)

    Пятипалая конечность

    На примере млекопитающих:

    У обезьян передние конечности вытянуты, кисти приспособлены для хватания, что облегчает лазанье по деревьям.

    У свиньи первый палец отсутствует, а второй и пятый - уменьшены. Остальные два пальца длиннее и твёрже остальных, концевые фаланги покрыты копытами.

    У лошади также вместо когтей копыто, нога удлинена за счёт костей среднего пальца, что способствует большой скорости передвижения.

    Кроты имеют укороченные и утолщённые пальцы, что помогает при копании.

    Муравьед использует крупный средний палец для раскапывания муравейникови гнёзд термитов.

    У китов передние конечности представляют собой плавники. При этом число фаланг пальцев увеличено по сравнению с другими млекопитающими, а сами пальцы скрыты под мягкими тканями.

    У летучей мыши передние конечности преобразовались в крылья за счёт значительного удлинения четырёх пальцев, а крючкообразный первый палец используется, чтобы висеть на деревьях.

    При этом все эти конечности содержат сходный набор костей с одним и тем же относительным расположением . Единство структуры не может быть объяснено с точки зрения полезности, так как конечности используются для совершенно разных целей.

    Части ротового аппарата насекомых

    Основные части ротового аппарата насекомых - верхняя губа, пара жвал (верхних челюстей), подглоточник, две максиллы (нижние челюсти) и нижняя губа (сросшиеся вторые максиллы). У разных видов эти составные части различаются по форме и размеру, у многих видов некоторые из частей утрачены. Особенности строения ротового аппарата позволяют насекомым использовать различные источники пищи (см. рисунок):

    В исходном виде (например, у кузнечика) сильные жвалы и максиллы используются для кусания и жевания.

    Медоносная пчела использует нижнюю губу для сбора нектара, а жвалами дробит пыльцу и разминает воск.

    У большинства бабочек верхняя губа уменьшена, жвалы отсутствуют, максиллы образуют хоботок.

    У самок комаров верхняя губа и максиллы образуют трубку, жвалы используются для протыкания кожи.

    Аналогичные органы

    Внешне схожие органы или их части, происходящие из различных исходных зачатков и имеющие неодинаковое внутреннее строение, называются аналогичными. Внешнее сходство возникает в ходе конвергентной эволюции, то есть в ходе независимого приспособления к сходным условиям существования.

    Крылья птиц - видоизменённые передние конечности, крылья насекомых - складки хитинового покрова.

    Жабры рыб - образования, связанные с внутренним скелетом, жабры многих ракообразных - выросты конечностей, ктенидиальные жабры моллюсков развиваются в мантийной полости, а жабры голожаберных моллюсков - выросты покровов спинной стороны тела.

    Обтекаемая форма тела у водных млекопитающих - китов, дельфинов - и у рыб.

    Колючки барбариса, кактуса - видоизменённые листья, колючки боярышника развиваются из побегов.

    Усики винограда (образующиеся из побегов) и усики гороха (видоизменённые листья).

    Форма различных суккулентов (растений, имеющих специальные ткани для запаса воды), таких как кактусы и молочай.

    Полное отсутствие целенаправленного заимствования удачных конструкций отличает эволюцию от сознательного проектирования. Например, перо - это удачная конструкция, помогающая при полете, но у млекопитающих (в том числе и у летучих мышей) перья отсутствуют. Жабры чрезвычайно полезны для водных животных, но у млекопитающих (таких как китообразные) они отсутствуют. Чтобы сфальсифицировать теорию эволюции, достаточно обнаружить перья или жабры у какого-либо вида млекопитающих .

    Рудименты

    Рудиментами называются органы, утратившие своё основное значение в процессе эволюционного развития организма. Если рудимент и оказывается функциональным, то он выполняет относительно простые или малозначимые функции с помощью структур, предназначенных для более сложных целей

    Например, птичье крыло - крайне сложная анатомическая структура, специально приспособленная для активного полёта, но крылья страусов не используются для полёта. Эти рудиментарные крылья могут использоваться для сравнительно простых задач, таких как поддержание равновесия на бегу и привлечение самок. Для сравнения, крылопингвина имеет большое значение, действуя в качестве плавника, а значит не может считаться рудиментом.

    Глаза у некоторых пещерных и роющих животных, таких как протей, слепыш, крот, астианакс мексиканский (Astyanax mexicanus, слепая пещерная рыба). Часто глаза скрыты под кожей .

    Малая берцовая кость у птиц.

    Остатки волосяного покрова и тазовых костей у некоторых китообразных .

    У некоторых змей, в том числе у питона, имеются кости задних конечностей . Эти кости не крепятся к позвоночнику и относительно свободно перемещаются в брюшной полости.

    У многих видов жуков, таких как Apterocyclus honoluluensis, крылья лежат под сросшимися надкрыльями .

    У человека к рудиментам в частности относятся хвостовые позвонки, волосяной покров туловища, ушные мышцы, бугорок ушной раковины, морганиевы желудочки гортани.

    Червеобразный отросток слепой кишки (аппендикс) у некоторых травоядных животных используется для переваривания растительной пищи и имеет большую длину. Например, у коалы длина аппендикса составляет от 1 до 2 метров. Аппендикс человека имеет длину от 2 до 20 сантиметров и не участвует в расщеплении пищи. Вопреки распространённому убеждению, наличие у аппендикса второстепенных функций не означает, что он не является рудиментом.

    Атавизмы

    Атавизмом называется появление у особи признаков, свойственных отдалённым предкам, но отсутствующих у ближайших. Появление атавизмов объясняется тем, что гены, отвечающие за данный признак, сохранились в ДНК, но в норме не формируют структуры, типичные для предков.

    Примеры атавизмов:

    Хвостовидный придаток у человека;

    Сплошной волосяной покров на теле человека;

    Добавочные пары молочных желез;

    Задние ноги у китов;

    Задние плавники у дельфинов;

    Задние ноги у змей;

    Дополнительные пальцы у лошадей

    Аргументы в пользу эволюции аналогичны аргументам для рудиментов.

    Палеонтологические доказательства

    Как правило, останки растений и животных разлагаются и исчезают без следа. Но иногда биологические ткани замещаются минеральными веществами, и образуются окаменелости. Обычно находят окаменевшие кости или раковины, то есть твёрдые части живых организмов. Иногда находят отпечатки следов животных или следы их жизнедеятельности. Ещё реже находят животное целиком - вмороженным в лёд в районах современной вечной мерзлоты, попавшим в окаменевшую позже смолу древних растений (янтарь) или в другую естественную смолу -асфальт.

    Изучением ископаемых останков занимается палеонтология. Как правило, осадочные породы залегают слоями, поэтому более глубокие слои содержат окаменелости из более раннего периода (принцип суперпозиции). А значит, сравнивая ископаемые формы из последовательных напластований, можно делать выводы об основных направлениях эволюции живых организмов. Для оценки возраста окаменелостей используются многочисленные методыгеохронологии.

    При взгляде на палеонтологическую летопись можно сделать вывод, что жизнь на Земле существенно менялась. Чем глубже в прошлое мы смотрим, тем меньше видим общего с современной биосферой. Первые прокариоты (простейшие одноклеточные, не обладающие оформленным клеточным ядром) появляются приблизительно 3,5 млрд лет назад. Первые одноклеточные эукариоты появляются 2,7-1,75 млрд лет назад. Примерно через миллиард лет, 840 млн лет назад, в палеонтологической летописи появляются первые многоклеточные животные, представители хайнаньской фауны. Согласно опубликованному в 2009 году исследованию, вероятно, более 635 млн лет назад уже существовали многоклеточные, относящиеся к одному из современных типов - губки. В период «кембрийского взрыва», 540-530 млн лет назад, за геологически короткий промежуток времени, в геологической летописи появляются остатки представителей большинства современных типов, имеющих скелеты, а ещё через 15 млн лет - первые примитивныепозвоночные, похожие на современных миног. Челюстноротые рыбы появляются 410 млн лет назад, насекомые - 400 млн лет назад, и ещё 100 млн лет на суше господствуют папоротниковидные, а основными группами наземной фауны остаются насекомые и земноводные. С 250 по 65 млн лет назад на Земле господствующее положение «верховных хищников» и крупных травоядных занимали динозавры и другие пресмыкающиеся, самыми распространёнными растениями были саговники и другие группы голосеменных. Первые ископаемые остатки цветковыхпоявляются 140-130 млн лет назад, а начало их широкого распространения относится к середине мелового периода (около 100 млн лет назад). Наблюдаемая картина соответствует происхождению всех видов от одноклеточных организмов и не имеет других научных объяснений.

    Известное доказательство эволюции - наличие так называемых промежуточных форм, то есть организмов, сочетающих в себе характерные признаки разных видов. Как правило, говоря о промежуточных (или «переходных») формах имеют ввиду ископаемые виды, хотя промежуточные виды не всегда вымирают. На основе филогенетического дерева теория эволюции предсказывает, какие промежуточные формы могут быть найдены, а какие - нет. В соответствии с научным методом, сбывшиеся предсказания подтверждают теорию. Например, зная строение организмов пресмыкающихся и птиц, можно предсказать некоторые особенности переходной формы между ними. Можно прогнозировать возможность найти останки животных, подобных рептилиям, но с перьями, или останки животных, подобных птицам, но с зубами или с длинными хвостами со скелетом из несросшихся позвонков. При этом можно предсказать, что не будут найдены переходные формы между птицами и млекопитающими, например - ископаемые млекопитающие с перьями или подобные птицам ископаемые с костями среднего уха как у млекопитающих.

    Вскоре после публикации «Происхождения видов» были обнаружены останки археоптерикса - промежуточной формы между рептилиями и птицами. Для археоптерикса характерно дифференцированное оперение (типичная птичья черта), а по строению скелета он слабо отличался от динозавров из группы компсогнатов. У него были когти на передних конечностях, зубы и длинный хвост со скелетом из несросшихся позвонков, а предполагаемые уникальные «птичьи» особенности скелета впоследствии были выявлены у других рептилий. Позднее были найдены и другие переходные формы между рептилиями и птицами.

    Известно множество других переходных форм, в том числе - от беспозвоночных к рыбам, от рыб к четвероногим, от земноводных к рептилиям и от рептилий к млекопитающим.

    В некоторых случаях ископаемые переходные формы обнаружить не удалось, например - нет следов эволюции шимпанзе (предположительно, это объясняется отсутствием условий для образования окаменелостей в лесах, где они живут), нет следов ресничных червей, а этот класс объединяет более 3500 видов. Разумеется, чтобы фальсифицировать теорию эволюции, недостаточно указать на подобные пробелы в палеонтологической летописи. Чтобы опровергнуть эволюционное учение, потребовалось бы предъявить скелет, не соответствующий филогенетическому дереву или не укладывающийся в хронологическую последовательность. Так, в ответ на вопрос о том, какая находка могла бы сфальсифицировать эволюционную теорию, Джон Холдейн отрезал: «Ископаемые кролики в докембрии!» Были найдены миллионы окаменелостей [ около 250 000 ископаемых видов, и каждая находка - это проверка теории эволюции, а пройденная проверка подтверждает теорию.

    В тех случаях, когда палеонтологическая летопись оказывается особенно полна, появляется возможность построить так называемые филогенетические ряды, то есть ряды видов (родов и т. д.), последовательно сменяющих друг друга в процессе эволюции. Наиболее известны филогенетические ряды человека и лошади (см. ниже), также в качестве примера можно привести эволюцию китообразных.

    Вопрос 1. Докажите существование эволюции с точки зрения эмбриологии.
    Эмбриологические доказательства. У всех позвоночных животных наблюдается значительное сходство зародышей на ранних стадиях развития: форма тела, зачатки жабр, хвост, один круг кровообращения и т.д. (закон зародышевого сходства К. Бэра). Однако по мере развития сходство между зародышами различных систематических групп постепенно стирается, и начинают преобладать черты, свойственные их классам, семействам, родам, и, наконец, видам. Биогенетический закон Геккеля-Мюллера гласит: онтогенез есть краткое и быстрое повторение филогенеза, то есть зародыш в индивидуальном развитии повторяет историю развития своего вида.
    Таким образом, все хордовые животные произошли от единых предков.

    Вопрос 2. Расскажите о палеонтологических доказательствах эволюционного процесса.
    Палеонтологические доказательства . К таким доказательствам относятся найденные остатки вымерших переходных форм, позволяющих проследить путь от одной группы живых существ к другой. Например, обнаружение трехпалого и пятипалого предков современной лошади, имеющей один палец, доказывает, что у предков лошади было пять пальцев на каждой конечности. Обнаружение ископаемых останков археоптерикса позволило сделать вывод о существовании переходных форм между пресмыкающимися и птицами. Нахождение остатков вымерших цветковых папоротников позволяет решить вопрос об эволюции современных покрытосеменных и т.п. На основании палеоантологических находок были выстроены филогенетические ряды, то есть ряды видов, последовательно сменяющих друг друга в процессе эволюции.

    Вопрос 3. Какие органы называют гомологичными, какие - аналогичными?
    Гомологичные органы формируются в процессе эмбрионального развития из одних и тех же зачатков и выполняют сходные функции. Примером гомологичных органов являются конечности всех наземных позвоночных.
    Аналогичные органы имеют разное происхождение и строение, но характеризуются внешним сходством и выполняют одинаковые функции. В качестве примера можно привести конечности собаки и конечности муравья, крыло бабочки и крыло летучей мыши.

    Вопрос 4. Приведите примеры сходства строения органов у неродственных групп животных, обитающих в одинаковых условиях.
    Примером может являться развитие крыльев у организмов, освоивших воздушную среду обитания. Крылья бабочек и стрекоз не родственны крыльям птиц и летучих мышей, хотя и выполняют те же функции. Другие примеры: хвостовые плавники акулы, дельфина и ихтиозавра; «стреляющие» языки лягушки и хамелеона; глаз осьминога и глаз человека.
    Вопрос 5. В чем причина появления рудиментов и атавизмов? Почему они служат доказательствами процесса эволюции?
    Рудименты - это органы, утратившие в процессе эволюции свое значение. Они закладываются во время эмбриогенеза, но полностью не развиваются. Причиной наличия рудиментов является то, что у предковых форм была необходимость в соответствующих органах, однако затем она исчезла, и органы подверглись дегенерации. Наличие рудиментов - доказательство процесса эволюции, как изменения строения органов при изменении условий окружающей среды. Примерами рудиментов являются третье веко и ушные мышцы человека, остатки тазового пояса у змей и китообразных, «глаза» пещерных и подземных животных.
    Атавизмы - это появляющиеся у отдельных особей признаки, характерные для предковых форм, но утраченные в процессе эволюции. Причиной возникновения атавизмов является активация обычно заблокированных генов, ответственных за развитие таких признаков. В норме эти гены, доставшиеся организму от предков, не проявляются. Например, у современной лошади может развиться трехпалая конечность вместо однопалой. Атавизмы встречаются и у человека, например дополнительная пара молочных желез, хвост, волосяной покров на лице.